首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to test our hypotheses that AT1A receptors play a role in the pathogenesis of cold-induced hypertension (CIH) and in the cold-induced increase in drinking responses to ANG II. Two groups of wild-type (WT) and two groups of AT1A receptor gene knockout (AT1A-KO) mice were used (6/group). Blood pressures (BP) of the four groups were similar during the control period at room temperature (25 degrees C). After the control period, one group of WT and one group of AT1A-KO mice were exposed to cold (5 degrees C), while the remaining groups were kept at 25 degrees C. BP of the cold-exposed WT group elevated significantly within 1 wk of exposure to cold and increased gradually to a maximum level by week 5. However, there was only a slight increase in BP of the cold-exposed AT1A-KO group. The maximal cold-induced increase in BP (DeltaBP) is significantly less in AT1A-KO group (11 +/- 3 mmHg) than in WT group (49 +/- 6 mmHg), indicating that AT1A receptor deficiency attenuates cold-induced elevation of BP. Interestingly, both WT and AT1A-KO mice developed cardiac and renal hypertrophy to the same extent. AT1A-KO caused a significant increase in urine and plasma levels of nitric oxide (NO), indicating that the renin-angiotensin system inhibits NO formation probably via AT1A receptors. Cold exposure inhibited endothelial NO synthase protein expressions and decreased urine and plasma levels of NO, which may be mediated partially by AT1A receptors. AT1A-KO completely abolished the cold-induced increase in drinking responses to ANG II. We conclude that 1) AT1A receptors play an essential role in the pathogenesis of CIH but not cardiac hypertrophy; 2) the role of AT1A receptors in CIH may be mediated partially by its inhibitory effect on the NO system; and 3) cold-induced increase in drinking response to ANG II is mediated by AT1A receptors.  相似文献   

2.
We previously showed that chronic cold exposure inhibits endothelial nitric oxide synthase (eNOS) expression and decreases nitric oxide (NO) production. The aim of the present study was to evaluate the possible role of the NO system in the development of cold-induced hypertension (CIH) by testing the hypothesis that adenoviral delivery of human eNOS gene increases NO production and attenuates CIH in rats. The effect of in vivo delivery of adenovirus carrying human eNOS full-length cDNA (rAdv.heNOS) on CIH was tested using four groups of Sprague-Dawley rats (6 rats/group). Blood pressure (BP) did not differ among the four groups during the control period at room temperature (24 degrees C). Two groups of rats received intravenous injection of rAdv.heNOS (1 x 10(9) plaque-forming units/rat), and the other two groups received the same dose of rAdv.LacZ to serve as controls. After gene delivery, one rAdv.heNOS-treated group and one rAdv.LacZ-treated group were exposed to cold (6 degrees C) while the remaining groups were kept at 24 degrees C. We found that the BP of the rAdv.LacZ group increased significantly within 1 wk of exposure to cold and reached a peak level at week 5 (152.2 +/- 6.4 mmHg). In contrast, BP (118.7 +/- 8.4 mmHg) of the cold-exposed rAdv.heNOS group did not increase until 5 wk after exposure to cold. The rAdv.heNOS increased plasma and urine levels of NO significantly in cold-exposed rats, which indicates that eNOS gene transfer increased NO production. Notably, rAdv.heNOS decreased plasma levels of norepinephrine and plasma renin activity in cold-exposed rats, which suggests that eNOS gene transfer may decrease the activities of the sympathetic nervous system and the renin-angiotensin system. Immunohistochemical analysis showed that the transferred human eNOS was expressed in both endothelium and adventitia of mesenteric arteries. We conclude that 1) eNOS gene transfer attenuates CIH by increasing NO production and inhibiting the sympathetic nervous system and the renin-angiotensin system; and 2) the NO system appears to mediate this nongenetic, nonpharmacological, nonsurgical model of hypertension.  相似文献   

3.
4.
Rats exposed chronically to a cold environment (5 degrees C/4 degrees F) develop hypertension. This cold-induced hypertension (CIH) is a non-genetic, non-pharmacological, non-surgical model of environmentally induced hypertension in rats. The renin-angiotensin system (RAS) appears to play a role in both initiating and/or maintaining the high blood pressure in CIH. The goal of the present study was to evaluate the role of central and peripheral circulating RAS components, angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin (Ang) II, in CIH. Seventy-two Sprague-Dawley adult male rats were used. Thirty-six rats were kept in cold room at 5 degrees C while the other 36 were at 24 degrees C as controls for 5 weeks. Systolic blood pressure (SBP) was recorded by tail cuff. The SBP was increased in rats exposed to cold within 1 week, and this increase was significant for the next 2-5 weeks of the cold exposure (p<0.01). Three subgroups of the cold-treated and control rats (n=12) were sacrificed at 1, 3 and 5 weeks. The brain and liver were removed and plasma was saved. The AGT mRNA significantly increased in the hypothalamus and liver in cold-treated rats from the first week of exposure to cold, and was maintained throughout the time of exposure to cold (n=4, p<0.01). The AGT protein levels in the brain, liver and plasma did not differ significantly between cold-treated and control rats (p>0.05, n=4). The hypothalamic Ang II levels were significantly increased, whereas plasma Ang II levels significantly decreased, in the rats of 5 weeks of cold exposure (n=8, p<0.05). Plasma ACE significantly increased in the rats of 1 week of cold exposure (p<0.05, n=12). The results show differential regulation of RAS components, AGT, ACE and Ang II, between brain and periphery in cold-exposed rats. We conclude that the exposure to low temperature initially increases plasma RAS but with continuous exposure to cold, the brain RAS maintains the hypertension, probably by sustained sympathetic activation, which would provide increased metabolism but also vasoconstriction leading to hypertension.  相似文献   

5.
Role of the sympathetic nervous system in cold-induced hypertension in rats   总被引:8,自引:0,他引:8  
Hypertension develops in rats exposed chronically to cold [6 +/- 2 degrees C (SE)] and includes both an elevation of mean arterial pressure and cardiac hypertrophy. Previous studies suggest that cold-exposed animals, at least initially, have a large sustained increase in the activity of their sympathetic nervous system, suggesting a failure of the baroreceptor system to provide sufficient negative feedback to the central nervous system. The present study was designed to investigate whether alterations in the activity of the sympathetic nervous system, including the baroreceptor reflex, occur during exposure to cold and whether they contribute to cold-induced hypertension. Twenty male rats were prepared with indwelling catheters in the femoral artery and vein. Ten of the rats were exposed to cold (6 +/- 2 degrees C) chronically, while the remaining 10 were kept at 26 +/- 2 degrees C. Withdrawal of arterial blood samples (less than 5 ml/kg), measurement of direct arterial pressures, and measurement of baroreflex function were carried out at 0800 h at intervals throughout the experiment. Norepinephrine and epinephrine concentrations in plasma were also determined at intervals throughout the experiment. Systolic, diastolic, and mean blood pressures of cold-exposed rats were increased to levels significantly above those of controls. The sensitivity of the baroreflex (delta heart period/delta mean arterial pressure) was decreased in the cold-treated group. The concentration of norepinephrine in plasma increased after 24 h of exposure to cold and remained elevated throughout the experiment, whereas the concentration of epinephrine in plasma increased initially but returned to control levels after 19 days of exposure to cold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The aim of this study was to assess our hypothesis that the release of antidiuretic hormone (ADH), the renal concentrating response to ADH, or both is decreased by prolonged cold exposure. Six groups (n = 6/group) of rats were used. Three groups were exposed to cold (5 degrees C), whilethe remaining three groups were kept at room temperature (25 degrees C). It was found that urine osmolality decreased significantly and serum osmolality increased significantly during cold exposure. The ratio of water/food intake was not affected by prolonged cold exposure. However, prolonged cold exposure increased the ratio of urine output/food intake in the cold-exposed rats, indicating that more urine flow is required by the cold-exposed rats to excrete the osmotic substance at a given food intake. The difference between water intake and urine output decreased significantly in the cold-exposed rats. Thus, prolonged cold exposure increases water loss from excretion. Renal concentrating responses to 24-h dehydration and Pitressin were decreased significantly in the cold-exposed rats. Plasma ADH levels remained unchanged, but renal ADH receptor (V2 receptor) mRNA was decreased significantly in the cold-exposed rats. The results strongly support the conclusion that cold exposure increases excretive water loss, and this may be due to suppression of renal V2 receptors rather than inhibition of ADH release.  相似文献   

8.
The kidney appears to play a crucial role in both initiating and maintaining the high blood pressure in cold-induced hypertension (CIH). The aim of the present study was to evaluate the changes of renal function and structure in rats exposed to cold for 2, 4 and 6 weeks. Systolic blood pressure increased significantly after 2 weeks of cold exposure and was maintained throughout the whole experiment. Upregulation of angiotensin type 1 receptor (AT1R) expression was seen in the vascular zone and distal tubule after 4 and 6 weeks of cold exposure. This was accompanied by an increase in malondialdehyde (MDA) levels and decreases in superoxide dismutase (SOD), nitric oxide synthase (NOS) activities and nitric oxide (NO) content in kidney. Structural changes were also observed in glomeruli, tubules and arteries in cold-treated rats. These results suggest that upregulation of kidney AT1R plays a critical role in the development of CIH, and its interaction with oxidative stress, NO and NOS may be involved in changes of renal function and structure.  相似文献   

9.
The level of mRNA for uncoupling protein was measured in brown adipose tissue of young (8-10 weeks) and old (11 months) lean and ob/ob mice using a cDNA clone constructed previously. The level of poly(A)+ RNA was also measured using an oligo(dT)18 probe. Mice were kept at 28 degrees C or exposed to 14 degrees C for 12 h. The level of mRNA for uncoupling protein was normal in brown adipose tissue of younger obese mice but reduced in brown adipose tissue of old obese mice. The cold-induced absolute increase in uncoupling protein mRNA was smaller in obese mice, regardless of age. It is concluded that the known attenuation of the acute thermogenic response of brown adipose tissue of the ob/ob mouse to cold is accompanied by a similar attenuation of the initiation of the trophic response. It is likely, however, that these defects are secondary to the chronic reduction in sympathetic nervous system activity in brown adipose tissue of the ob/ob mouse, which results in a functional atrophy of the tissue.  相似文献   

10.
Y Xu  Z Yang  C Su 《Cryobiology》1992,29(3):422-427
The cell-mediated immune function of cold-adapted BALB/c inbred mice was studied in experiments of splenic lymphocyte blastogenesis, indicated by tritium-labeled deoxythymidine incorporation and SDS-PAGE autoradiography of synthetic proteins in lymphocytes. Male BALB/c inbred mice were randomly divided into two groups: control (living at 25 degrees C) and cold-exposed (living at 2 degrees C). Results are as follows: in contrast with the control group, there was an obvious fluctuation of cell-mediated immune function in the cold-exposed group at initial cold exposure because of transient stress to cold; then cell-mediated immune function gradually recovered to control level. From Day 15, the cell-mediated immune function of the cold-exposed group was remarkably enhanced. On Day 15, the lymphocyte blastogenesis rate was increased by 20.66% (P less than 0.05), which implies the onset of cold adaptation; on Days 21 and 31, the rates increased by 80.15% (P less than 0.05) and 40.36% (P less than 0.05), respectively. Two to six months later, with continuing cold exposure, the murine lymphocyte blastogenesis rate in the cold-exposed group remained higher than that in the control group. The lymphocyte protein synthesis of the cold-exposed group, indicated by tritium-labeled leucine incorporation, apparently increased on Day 15 and the stimulated rate was 101.47% (P less than 0.05). SDS-PAGE autoradiography of synthetic proteins in lymphocytes demonstrated that after 2 weeks of cold exposure, protein bands were enriched in both quantity and quality. These results are identical to the results obtained from lymphocyte blastogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Chronic exposure of rats to cold (5 degrees C) induces hypertension within 3 weeks. The objective of this study was to determine the effect of treatment with graded levels of dietary NaCl on the induction of hypertension during chronic exposure to cold. Four groups of male rats were used. The first, given a commercial sodium-deficient diet containing 0.30% NaCl, served as the warm-adapted control group. The second, third, and fourth groups were given the same diet containing 0.075%, 0.15%, and 0.30% NaCl, respectively. Because cold-exposed rats ingest approximately twice as much food as warm-adapted controls, this represented half, the same, and twice the amount of NaCl ingested by the control group. The latter three groups were placed in cold air (5 degrees C). All cold-treated groups had an elevation of systolic blood pressure that was proportional to the concentration of NaCl in the diet by the seventeenth week of exposure to cold. Cardiac hypertrophy occurred to the same extent in all cold-exposed groups and was thus unaffected by the NaCl content of the diet or by the extent of elevation of blood pressure. Hence, cardiac hypertrophy during chronic exposure to cold is supported by other factors, possibly by the increased concentration of either norepinephrine or triiodothyronine, or both, which occurs characteristically in rats under these conditions. The results of this experiment suggest that the amount of NaCl ingested daily plays a role in the cold-induced elevation of blood pressure observed in rats.  相似文献   

12.
Twenty-eight-day-old male rats were used in three experiments to study whether cold exposure potentiates pineal actions in nonhibernating mammals. The following questions were considered: (a) Can cold exposure increase the antigonadal effects of light deprivation? (b) Are the effects induced by blindness plus cold exposure pineal dependent? (c) Can cold exposure modify the response of the endocrine-reproductive axis to exogenously administered melatonin? Blind cold-exposed rats showed a significant loss in body weight as well as in weights of pituitary and reproductive tract organs compared with either intact or blind animals kept at 22 degrees C, or intact rats exposed to cold; serum testosterone levels were also lowest in blind cold-exposed rats. These effects were not present in blind cold-exposed animals that were pinealectomized at the beginning of the experiment. When intact animals placed at 22 or 10 degrees C were treated with daily injections of melatonin (50 micrograms) there was a reduction of body weight and weights of the hypophyso-gonadal axis organs. Those effects of melatonin were, however, significantly greater in cold-exposed rats than in rats placed at 22 degrees C. These results suggest that cold exposure should be considered as another state which potentiates the pineal-dependent actions of light deprivation. Cold exposure probably acts by increasing the sensitivity of sites at which pineal melatonin exerts its actions.  相似文献   

13.
Cold resistance appears altered with aging. Among existing hypotheses, the impaired capacity in response to cold could be related to an altered regulation of plasma IGF-1 concentration. The combined effects of age and cold exposure were studied in a short-living primate, the gray mouse lemur (Microcebus murinus), which adjusts its energy balance using a daily torpor phase, to avoid high energy cost of normothermia maintenance. Changes in body mass, core temperature, locomotor activity, and caloric intake were monitored under 9-day exposures to 25 degrees C and 12 degrees C in captive animals in winter conditions. Short-term (after 2 days) and long-term (after 9 days) cold-induced changes in IGF-1 levels were also evaluated. In thermoneutral conditions (25 degrees C), general characteristics of the daily rhythm of core temperature were preserved with age. At 12 degrees C, age-related changes were mainly characterized by a deeper hypothermia and an increased frequency of torpor phases, associated with a loss of body mass. A short-term cold-induced decrease in plasma IGF-1 levels was observed. IGF-1 levels returned to basal values after 9 days of cold exposure. No significant effect of age could be evidenced on IGF-1 response. However, IGF-1 levels of cold-exposed aged animals were negatively correlated with the frequency of daily torpor. Responses exhibited by aged mouse lemurs exposed to cold revealed difficulties in the maintenance of normothermia and energy balance and might involve modulations of IGF-1 levels.  相似文献   

14.
Delayed effects of cold stress on immune response in laboratory mice   总被引:5,自引:0,他引:5  
This study was undertaken to examine the trade-off between the cost of thermoregulation and immune function in laboratory mice. Mice were maintained either at 23 degrees C or cold exposed at 5 degrees C for 10 days. Then, they were immunized with sheep red blood cells. Thus, the cold-exposed mice had either experienced or not experienced cold stress prior to immunization. Cold stress elicited a substantial increase in food intake, accompanied by a significant reduction in food digestibility. An increase in mass of metabolically active internal organs (small intestines, heart and kidney) was observed in cold-exposed mice. These findings reassured us that costs of increased thermoregulation caused by cold stress were substantial. The immune response of mice exposed to long-lasting cold stress was significantly lower, but immune response was not affected in short-exposed mice. Differences in immune response between experimental groups accompanied changes in mass of immunocompetent organs (thymus and spleen). Our findings indicate that studies of trade-offs should account for the fact that resource reallocation in response to an environmental challenge may not be immediate. In fact, resource reallocation may be postponed until the new environmental state becomes permanent or until an organism attains physiological adaptation to the current conditions.  相似文献   

15.
16.
To examine whether cold-induced vascular endothelial growth factor (VEGF) gene expression in brown adipose tissue involved generation of hypoxic oxygen levels by thermogenic processes, we cold-exposed wild-type mice, as well as uncoupling protein-1 (UCP1)-ablated mice in which no thermogenesis in brown adipocytes can be induced. Cold exposure stimulated VEGF expression in both wild-type and UCP1-ablated mice. Unexpectedly, the effect was 3-fold higher in UCP1-ablated animals, whereas cultured brown adipocytes from both genotypes responded identically to norepinephrine stimulation. These results demonstrate that generation of low oxygen levels does not contribute to cold-induced VEGF expression in brown adipose tissue, but the results are consistent with an adrenergic regulation of expression.  相似文献   

17.
In their natural environment, burrowing rodents experience rather fluctuating ambient temperatures and are acutely cold exposed only for short periods outside their burrows. The effect of short daily cold exposure on basal metabolic rate, nonshivering thermogenesis, brown fat thermogenesis, and uncoupling protein mRNA was studied in the Djungarian hamster, Phodopus sungorus. They were kept at 23 degrees C and exposed to 5 degrees C daily either for one 4-h period or twice for 2 h (in 12-h intervals). At the same time control hamsters were kept continuously either at thermoneutrality (23 degrees C) or at 5 degrees C. Two 2-h cold exposures daily were sufficient to increase basal metabolic rate and nonshivering thermogenesis to the same level as continuous cold exposure, whereas one 4-h cold period per day did not result in a significant increase of both parameters. Brown fat thermogenesis (as measured by cytochrome-c oxidase activity and GDP binding to the mitochondrial uncoupling protein) increased to the same extent by both treatments with short daily cold exposure. However, this increase was less than in the chronically cold-exposed hamsters. A similar result was found for uncoupling protein mRNA: both short-term cold-exposed hamsters increased uncoupling protein mRNA levels to a similar extent, but less than after chronic cold treatment. It is concluded that short daily cold exposures are sufficient to cause adaptive increases of the capacity of metabolic heat production as well as brown fat thermogenic properties.  相似文献   

18.
Chronic intermittent hypoxia (CIH) leads to increased sympathetic nerve activity and arterial hypertension. In this study, we tested the hypothesis that CIH impairs baroreflex (BR) control of heart rate (HR) in mice, and that decreased cardiac chronotropic responsiveness to vagal efferent activity contributes to such impairment. C57BL/6J mice were exposed to either room air (RA) or CIH (6-min alternations of 21% O(2) and 5.7% O(2), 12 h/day) for 90 days. After the treatment period, mice were anesthetized (Avertin) and arterial blood pressure (ABP) was measured from the femoral artery. Mean ABP (MABP) was significantly increased in mice exposed to CIH (98.7 +/- 2.5 vs. RA: 78.9 +/- 1.4 mmHg, P < 0.001). CIH increased HR significantly (584.7 +/- 8.9 beats/min; RA: 518.2 +/- 17.9 beats/min, P < 0.05). Sustained infusion of phenylephrine (PE) at different doses (0.1-0.4 microg/min) significantly increased MABP in both CIH and RA mice, but the ABP-mediated decreases in HR were significantly attenuated in mice exposed to CIH (P < 0.001). In contrast, decreases in HR in response to electrical stimulation of the left vagus nerve (30 microA, 2-ms pulses) were significantly enhanced in mice exposed to CIH compared with RA mice at low frequencies. We conclude that CIH elicits a sustained impairment of baroreflex control of HR in mice. The blunted BR-mediated bradycardia occurs despite enhanced cardiac chronotropic responsiveness to vagal efferent stimulation. This suggests that an afferent and/or a central defect is responsible for the baroreflex impairment following CIH.  相似文献   

19.
This study primarily investigated the effects of intermittent cold exposure (ICE) on oxidative stress (OS) in the hippocampus(HC) and plasma lipid profile of old male rats. Secondly, it evaluated structural changes in the hippocampus region of the rat’s brain. Thirdly, it attempted an evaluation of the effectiveness of the combined supplement of vitamins C and E in alleviating cold stress in terms of these biochemical parameters. Thirty male rats aged 24 months were divided into groups of five each: control (CON), cold-exposed at 10 °C (C10), cold-exposed at 5 °C (C5), supplemented control (CON+S), and supplemented cold-exposed at either 5 °C (C5+S) or 10 °C (C10+S). The rats were on a daily supplement of vitamin C and vitamin E. Cold exposure lasted 2 h/day for 4 weeks. Rats showed increased levels of hydrogen peroxide (H2O2), and thiobarbituric acid reactive substances (TBARS) in the HC at 10 °C with further increase at 5 °C. Cold also induced neuronal loss in the hippocampus with concomitant elevations in total cholesterol (TCH), triglycerides (TG) and low-density lipoproteins (LDL-C) levels, and a depletion in high-density lipoprotein (HDL-C). A notable feature was the hyperglycaemic effects of ICE and depleted levels of vitamins C and E in the hippocampus and plasma while supplementation increased their levels. More importantly, a positive correlation was observed between plasmatic LDL-C, TCH and TG and hippocampal TBARS and H2O2 levels. Further, intensity of cold emerged as a significant factor impacting the responses to vitamin C and E supplementation. These results suggest that cold-induced changes in the plasma lipid profile correlate with OS in the hippocampus, and that vitamin C and E together are effective in protecting from metabolic and possible cognitive consequences in the old under cold exposures.  相似文献   

20.
Factors affecting cold-induced hypertension in rats   总被引:3,自引:0,他引:3  
A 3- to 4-week exposure of rats to a cold environment (5 +/- 2 degrees C) induces hypertension, including elevation of systolic, diastolic, and mean blood pressures and cardiac (left ventricular) hypertrophy. The studies described here were designed to investigate some factors affecting both the magnitude and the time course for development of cold-induced hypertension. The objective of the first study was to determine whether there was an ambient temperature at which the cold-induced elevation of blood pressure did not occur. The objective of the second experiment was to determine whether body weight at the time of exposure to cold affected the magnitude and time course for development of hypertension. To assess the first objective, male rats were housed in a chamber whose temperature was maintained at 5 +/- 2 degrees C while others were housed in an identical chamber at 9 +/- 2 degrees C. After 7 days of exposure to cold, the rats exposed to the colder temperature had a significant elevation of blood pressure (140 +/- 2 mm Hg) compared with the group maintained at 9 degrees C (122 +/- 3 mm Hg). The rats exposed to 9 degrees C had no significant elevation of systolic blood pressure at either 27 or 40 days after initiation of exposure to cold. At the latter time, the temperature in the second chamber was reduced to 5 +/- 2 degrees C. By the 25th day of exposure to this ambient temperature, the rats had a significant increase in systolic blood pressure above their levels at 9 degrees C. Thus, there appears to be a threshold ambient temperature for elevation of blood pressure during exposure to cold. That temperature appears to lie somewhere between 5 and 9 degrees C. The second objective was assessed by placing rats varying in weight from approximately 250 to 430 g in air at 5 degrees C. There was a highly significant direct relationship (r = 0.96) between body weight at the time of introduction to cold and the number of days required to increase systolic blood pressure by 10 mm Hg above pre-cold exposure level. The third objective was to make an initial assessment of potential differences among strains of rats with respect to development of cold-induced hypertension. To this end, rats of the Fischer 344 strain were used. Systolic blood pressures of these rats also increased during chronic exposure to cold.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号