首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-Leucine uptake and incorporation in the blue-green alga Anacystisnidulans were measured during illumination with monochromaticlight of 630 and 717 nm. With near as well as far red light,an enhanced uptake of 14C-L-leucine was observed. In far redlight, the leucine uptake depended on light intensity and pHvalue. After the first few minutes, the uptake remained constantfor more than one hour. The rate of uptake in light was thesame in air as in nitrogen. The incorporation of 14C-leucinein the soluble fraction decreased in the presence of chloramphenicolwhich prevents protein synthesis. In far red light, its incorporationwas insensitive to DCMU (5 ? 10–6 M) but was depressedby uncouplers like CCCP or desaspidin. These effects are takenas evidence that leucine incorporation under the conditionsused is dependent on photosystem I reactions and cyclic photophosphorylation.DBMIB and KCN in high concentrations decrease the leucine incorporationin far red light and indicate that plastoquinone and plastocyaninare members of the cyclic electron flow also in intact cellsof Anacystis. Antimycin A has no inhibitory effect. The inhibitionby other less specific inhibitors like salicylaldoxime, desaspidinand DSPD is discussed. (Received August 19, 1978; )  相似文献   

2.
In the fern Lygodium japonicum, the effect of the exogenousapplication of two gibberellin methyl esters, gibberellin A4methyl ester (GA4Me) and gibberellin A20 methyl ester (GA20Me)on spore germination in the dark and uptake of GA4Me and GA20Meby spores was investigated. Tritiated GA4Me and GA20Me wereprepared and used as radioactive tracers. The activity of GA4Mewas more than 100-fold that of GA20Me for the induction of sporegermination. When treated for 24 h, the activity for inducingspore germination remained after removal of the gibberellinmethyl esters from the medium. The amount of GA4Me taken upby spores was more than three times that of GA20Me throughoutthe 24 h time course of treatment. The uptake of both gibberellinmethyl esters was proportional to the external concentrationfor the range of concentrations between 10–9 M and 10–6M. When treated with the tritiated gibberellin methyl estersat 10–6 M and 10–7 M for 24 h, most of the gibberellinmethyl esters taken up by the spores were not metabolized. Althoughthe uptake of the two gibberellin methyl esters differed by3- to 5- fold, their abilities to induce spore germination differedby more than 100-fold. Therefore, the difference in the activityof the two gibberellin methyl esters regarding the inductionof spore germination could not be explained solely by the differencein their uptake. (Received January 11, 1988; Accepted May 26, 1988)  相似文献   

3.
Mertz  Dan 《Plant & cell physiology》1985,26(4):701-707
The effect of red light on uptake and efflux of gibberellinby etiolated pea stem sections has been determined by the techniqueof compartmental analysis. Exposure of segments to red lightinhibited uptake and efflux of [3H]-GA1 by the cytoplasmic compartmentwhile efflux from the vacuolar compartment was not significantlyaffected. It is suggested that phytochrome may alter the permeabilityproperties of the plasma membrane and/or the binding of GA1,as, a means of controlling the basipetal transport of gibberellin. (Received November 19, 1984; Accepted March 2, 1985)  相似文献   

4.
Flower buds of Pharbitis nil, strain Violet, open about 10 hrafter the onset of darkness at 24?C. Daylight fluorescent lightat 0.3–3 W/m2 given during the first 4 hr of this darkperiod delayed the time of flower-opening, but that given laterhad only a slight effect or was ineffective. Red light was mosteffective in delaying the time of flower-opening, and a 5-minred light pulse given every 30 min also was effective. The effectof this 5-min red light was partly reversed by a subsequentfar-red light pulse which suggests that the absence of Pfr duringthe first 4 hr in the dark is necessary for normal timing offlower-opening. Five minutes of red light given 10 hr after the onset of darknessadvanced the phase of the circadian rhythm which controls thetime of flower-opening; buds opened about 7 hr earlier on thefollowing day. This effect of red light was also reversed bya subsequent exposure to far-red light, which suggests the participationof phytochrome in this reaction. (Received October 8, 1979; )  相似文献   

5.
1) With Chlorella ellipsoidea cells, in the presence of 5x10–6M DSPD, or in its absence, the amounts of 14CO2 incorporatedin P-esters, serine-plus-glycine and alanine were larger underred light than under blue light, whereas blue light specificallyincreased 14CO2-incorporation in aspartate, glutamate, malateand fumarate (blue light effect). The amount of total 14C fixedunder blue or red light was greatly decreased by the additionof DSPD. When the concentration of DSPD was raised to 5x10–4M, practically no radioactivity was found, under blue or redlight, in aspartate, glutamate and fumarate. Radioactivity inalanine was greatly increased. Effects of higher concentrationof DSPD are explained as due to the inhibition of PEP carboxylaseactivity in Chlorella cells. 2) The percentage incorporation of 14C into aspartate and theother compounds mentioned above, under near infra-red illuminationwas significantly smaller than that under blue light and wasalmost equal to that under red light. These results along withthe effect of 5x10–6 M DSPD, exclude the possibility thatcyclic photophosphorylation is involved in the "blue light effect"mechanism. (Received December 12, 1969; )  相似文献   

6.
Experiments were performed with soybean plants to test the hypothesisthat the inhibition of NO3 uptake in darkness is dueto feedback control by NO3 and/or Asn accumulating inthe roots. Xylem export of N compounds was shown to depend onwater flux in both excised root systems and 15N-labelled intactplants, suggesting that the shortage of transpiration in darknessmay be responsible for the retention of NO3 and Asn inthe roots. This was verified in experiments where the light/darkpattern of transpiration was modulated in intact plants by changingthe relative humidity of the atmosphere. Any decrease of transpirationat night was associated with a concurrent stimulation of NO3and Asn accumulations in the roots. However, the light/darkrhythmicity of NO3 uptake was only marginally affectedby these treatments, and thusappeared quite independent fromtranspiration and root NO3 or Asn levels. Typically,the maintainance of a constant transpiration during the day/nightcycle did not suppress the inhibition of NO3 uptake indarkness, whereas it almost prevented the dark increase in rootNO3 and Asn contents. These data strongly support theconclusion that the effect of light on NO3 uptake isnot mediated by changes in translocation and accumulation ofN compounds. Key words: Glycine max, light/dark, cycles, nitrate uptake, transpiration, transport of N compounds, accumulation of N compounds  相似文献   

7.
The effect of light on NO3 utilization was investigatedin non-nodulated soybean (Clycine max L. Merr., cv. Kingsoy)plants during a 14/10 h light/dark period at a constant temperatureof 26C. A 30–50% decrease of net NO3 uptake ratewas observed 2–6 h after the lights were turned off. Thiswas specifically due to an inhibition of NO3 influx asmeasured by 15N incorporation during 5 min. The absolute valuesof NO3 efflux depended on whether the labelling protocolinvolved manipulation of the plants or not, but were not affectedby illumination of the shoots. Darkness had an even more markedeffect in lowering the reduction of 15NO3 in both rootsand shoots, as well as xylem transport of 15NO3 and reduced15N. Concurrently with this slowing down of transport and metabolicprocesses, accumulations of NO3 and Asn were significantlystimulated in roots during the dark period. These data are discussedin view of the hypothesis that darkness adversely affects NO3uptake through specific feedback control, in response to alterationsin the later steps of N utilization which are more directlydependent on light. Key words: Glycine max, light/dark cycles, nitrate uptake, nitrate reduction  相似文献   

8.
Three-month-old Carrizo citrange (hybrid of Citrus sinensisL. OsbeckxPoncirus trifoliata Blanco) seedlings were grown incontrolled environment chambers in pots of fine sand. Plantswere irrigated with either non-saline or saline solutions overa 3-week period. After these treatments, plants were transferredto vessels containing a 5 m M15NO3K (96% atom excess15N) solution,and transpiration as well as concentration of15N and Cl-in roots,stem and leaves were measured after 24 h. Transpiration and15NO3-uptakerates were inhibited after exposure to NaCl and the concentrationof salt pre-treatment determined the intensity of this inhibitoryeffect. To determine the effect of transpiration on NO3-absorption,net15NO3-uptake rate was measured in salt stressed and non-stressedplants exposed to different light intensities or relative humiditiesand also in detached roots. Reduction in NO3-uptake was moreclosely related to Cl-antagonism from salt stress than to reducedtranspiration rate. Copyright 1999 Annals of Botany Company Nitrate, absorption, inhibition transport system, salt, light and humidity.  相似文献   

9.
The uptake rate of carbon and nitrogen (ammonium, nitrate andurea) by the Microcystis predominating among phytoplankton wasinvestigated in the summer of 1984 in Takahamaira Bay of LakeKasumigaura. The Vmax values of Microcystis for nitrate (0.025–0.046h–1) and ammonium (0.15–0.17 h–1) were considerablyhigher than other natural phytoplankton. The ammonium, nitrateand urea uptake by Microcystis was light dependent and was notinhibited with nigh light intensity. The K1 values were farlower than the Ik values. The carbon uptake was not influencedby nitrogen enrichment. Microcystis accelerated the uptake rateby changing Vmax/K s value when nitrogen versus carbon contentin cells declined. Nitrate was scarcely existent in TakahamairiBay during the summer, when Microcystis usually used ammoniumas the nitrogen source. However, the standing stock of ammoniumin the water was far lower than the daily ammonium uptake rates.Therefore, the ammonium in this water had to be supplied becauseof its rapid turn-over time (–0.7–2.6 h).  相似文献   

10.
Photoinhibition of Glucose Uptake in Chlorella   总被引:1,自引:0,他引:1  
In colorless mutant cells of Chlorella vulgaris (M125), endogenousrespiration in the dark was not affected by 30-min preilluminationwith white light (9,000 mW?m–2), while exogenous respirationof glucose or fructose was inhibited significantly by the sametreatment in air, but not under N2. This light effect on exogenousrespiration was accompanied by an inhibition of hexose uptake. When autotrophically grown wild-type cells of Chlorella vulgaris(211-11h) were incubated in glucose medium with DCMU, lightalso greatly inhibited glucose uptake and growth. Blue lightwas very effective, while red light had only a slight effect.This photoinhibitory effect was also observed in algal cellsthat had been grown in a glucose-containing medium in the dark. Using SDS-gel electrophoresis, a new protein peak with a molecularweight of 35–40 kDa was detected in plasma membrane-richcell wall fractions when Chlorella vulgaris (211-11h) cellswere transferred to a glucose-containing medium. This peak disappearedafter the algal cells were returned to the glucose-free medium.These findings suggest that this protein includes the hexose-carrierprotein. Blue light significantly inhibited the formation ofthis protein during incubation in a glucose-containing medium. 1 Present address: Laboratory of Chemistry, Faculty of PharmaceuticalSciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan. (Received July 31, 1986; Accepted March 12, 1987)  相似文献   

11.
Gibberellin-like substances of stems and leaves from Steviarebaudiana were analyzed and gibberellin A20 was identifiedby gas chromatography-mass spectrometry. The presence of GA20in S. rebaudiana is significant for the interpretation of thegibberellin activity of steviol. It indicates that steviol,the C-13 hydroxykaurenoic acid, may function as a precursorfor C-13 hydroxy-gibberellins and not as a gibberellin analog. 1 This work was supported by National Science Foundation GrantGB 17304 to M. R. and by a Research Grant-in-Aid from SigmaXi to L. M. A. The research described is from a dissertationsubmitted by L. M. A. in partial fulfillment of the requirementsfor the Ph.D. degree. 2 Present address: Laboratory of Plant Morphogenesis, Departmentof Biology, Manhattan College, Bronx, N. Y. 10471, U. S. A. (Received June 12, 1978; )  相似文献   

12.
Chlorella cells incubated in the dark longer than 12 hr showedpronounced blue light-induced 14CO2 fixation into aspartate,glutamate, malate and fumarate (blue light effect), whereasthose kept under continuous light showed only a slight bluelight effect, if any. 2) During dark incubation of Chlorellacells, phosphoenolpyruvate carboxylase activity and the capacityfor dark 14CO2 fixation decreased significantly, whereas ribulose-1,5-diphosphatecarboxylase activity and the capacity for photosynthetic 14CO2fixation (measured under illumination of white light at a highlight intensity) did not decrease. 3) In cells preincubatedin the dark, intracellular levels of phosphoenolpyruvate and3-phosphoglycerate determined during illumination with bluelight were practically equal to levels determined during illuminationwith red light. 4) The blue light effect was not observed incells incubated widi chloramphenicol, indicating that blue light-inducedprotein synthesis is involved in the mechanism of the effect. (Received April 9, 1971; )  相似文献   

13.
The involvement of extracellular calcium in rhythmic and nyctinasticmovement oi Albizzia lophantha Benth. leaflets has been studiedby testing the effect of LaCl3 and its interaction with thephytochrome control of these movements. A 2h pulse of LaCl3(10–50 mM) promotes a loss of rhythmicity, leaving leafletsin an open position, and also overrides the phase shift causedby phytochrome. A 2 h pulse of LaCl3 (1 mM) decreases the amplitudeof rhythmic oscillations but does not promote arhythmicity normodify the phase shift caused by red light. The red light pulseabolishes the damping effect of 1 mM La3+. LaCl3 inhibits nyctinasticclosure and decreases the phytochrome control of nyctinasticclosure. A subsequent supply of CaCl2 (10 to 100 mM) does notreverse La3+ (10 mM) inhibition of closure. Light-induced openingis independent of LaCl, but rhythmic opening in darkness showsdifferent responses to La3+ depending on the time at which La3+is applied. Data suggest that extracellular calcium is requiredfor the closure mechanism and for the expression of rhythmicmovement. It could also be involved in the phytochrome transductionpathway and/or in the linking steps between phytochrome andthe circadian clock. Key words: Albizzia lophantha, calcium, circadian rhythm, lanthanum, phytochrome  相似文献   

14.
Green Light Drives CO2 Fixation Deep within Leaves   总被引:5,自引:0,他引:5  
Maximal l4CO2-fixation in spinach occurs in the middle of thepalisade mesophyll [Nishio et al. (1993) Plant Cell 5: 953],however, ninety percent of the blue and red light is attenuatedin the upper twenty percent of a spinach leaf [Cui et al. (1991)Plant Cell Environ. 14: 493]. In this report, we showed thatgreen light drives 14CO2-fixation deep within spinach leavescompared to red and blue light. Blue light caused fixation mainlyin the palisade mesophyll of the leaf, whereas red light drovefixation slightly deeper into the leaf than did blue light.14CO2-fixation measured under green light resulted in less fixationin the upper epidermal layer (guard cells) and upper most palisademesophyll compared to red and blue light, but led to more fixationdeeper in the leaf than that caused by either red or blue light.Saturating white, red, or green light resulted in similar maximal14CO2-fixation rates, whereas under the highest irradiance ofblue light given, carbon fixation was not saturated, but itasymptotically approached the maximal 14CO2-fixation rates attainedunder the other types of light. The importance of green lightin photosynthesis is discussed. 1Supported in part by grants from Competitive Research GrantsOffice, U.S. Department of Agriculture (Nos. 91-37100-6672 and93-37100-8855).  相似文献   

15.
Mode of photosynthesis in Mesembryanthemum crystallinum changesfrom C3 to Crassulacean acid metabolism (CAM) when the plantswere stressed with high salinity. [14C]Pyruvate uptake for 30s into intact chloroplasts isolated from leaves of the CAM modeof M. crystallinum was enhanced more than 5-fold in the lightcompared with that in the dark. The stromal concentration ofpyruvate in the light reached to more than 2.5 times of themedium. In contrast, little or no pyruvate uptake occurred inchloroplasts from C3 leaves in either light or dark condition.The initial uptake rate (10 s incubation at 4°C) into theCAM chloroplasts in the light was about 3-fold higher than therate in the dark. Km and Vmax of the initial uptake in the lightwere 0.54 mM and 8.5 µmol (mg Chl)–1 h–1 respectively.These suggest that pyruvate was actively incorporated into theCAM chloroplasts against its concentration gradient across theenvelope in the light. When hydroponically grown M. crystallinumwere stressed by 350 mM NaCl, the capacity of chloroplasts forpyruvate uptake was induced in 6 d corresponding to the inductionof the activities of PEP-carboxylase and NAD(P)+-malic enzymesin response to salt stress. (Received October 12, 1995; Accepted January 19, 1996)  相似文献   

16.
The short-term dependence of NO3 uptake upon photosynthesisand sugar supply to the roots of soybean plants was investigatedin a series of experiments where CO2 availability, light intensityor conduction of phloem sap to the roots were severely limited.Removal of CO2 from the atmosphere or girdling of the stem equallyprevented the stimulation of NO3 uptake when plants weretransferred from darkness to the light. The effect of thesetwo treatments can be reversed by CO2 re-supply or by additionof 10 mM glucose in the nutrient solution, respectively. Glucosewas also more effective in stimulating NO3 uptake byintact plants in darkness than in light. Collectively, theseobservations are interpreted as evidence that the diurnal changesin NO3 uptake are due to decreased phloem transport ofphotosynthates in darkness. Accordingly, the magnitude of thesechanges was much dependent on starch accumulation in the leavesat the end of the photo-period. Shading the plants lowered thisaccumulation, and resulted in an amplification of the diurnalchanges in NO3 uptake. These results are discussed inconnection with the hypothesis that the carbon-dependent plasticityof the night/day ratio of NO3 uptake is an importantfeature of the co-ordination of the acquisition of N and C bythe plant. Key words: Glycine max, light/dark cycle, NO3 uptake, C and N acquisition  相似文献   

17.
In Elodea densa leaves light strongly stimulates electrogenic,K +-dependent, vanadate- and erythrosin B-sensitive H+ extrusionand hyperpolarizes the transmembrane electrical potential. Theseeffects of light are suppressed by treatment with DCMU, an inhibitorof photosynthesis, which has no effect on H+ extrusion in thedark. Light-induced H+ extrusion requires the presence of K+in the medium and is associated with increased K+ uptake andalkalinization of the cell sap. Light-induced H+ extrusion increaseswith increased CO2 concentration. At constant CO2 concentration(104 parts 10–6) the rate of H+ extrusion is stronglyenhanced by an increased light intensity up to 30 W m–2.Different wavelengths, between 400 and 730 nm, induce a significantstimulation of both proton secretion and transmembrane potentialhyperpolarization. The stimulating effects of light on H+ extrusion, K+ uptakeand cell sap pH are very similar to those induced in the darkby fusicoccin, a toxin known to stimulate strongly ATP-driven,vanadate- and erythrosin B-sensitive H+ transport. In the light,the effects of fusicoccin are only partially additive to thoseof light, thus suggesting that the two factors influence thesame system. The identification of this system with the plasmamembrane H+-ATPase is indicated by the observed inhibition ofthe effects of either light or fusicoccin by the H+-ATPase inhibitorsvanadate and erythrosin B. These data indicate that the activation of electrogenic H+ extrusionand of K+ uptake by light is mediated by some products of photosynthesis.The mechanism and the possible physiological implications ofthis phenomenon are discussed. Key words: Photosynthesis, H+ pump, K+ uptake, Elodea densa  相似文献   

18.
Ammonia Induces Starch Degradation in Chlorella Cells   总被引:3,自引:0,他引:3  
When ammonia was added to cells of Chlorella which had fixed14CO2 photo synthetically, 14C which had been incorporated intostarch was greatly decreased. A similar effect was observedwhen potassium nitrate and sodium nitrite were added. The ammonia-induceddecrease in 14C-starch was observed in all species of Chlorellatested. With cells of C. vulgaris 11h, most of the radioactivityin starch was recovered in sucrose, indicating that ammoniainduces the conversion of starch into sucrose. The percent of14C recovered in sucrose differed from species to species andpractically no recovery in sucrose was observed in C. pyrenoidosa.In most species tested, the enhancing effects of blue lightand ammonia on O2 uptake as well as the ammonia effect on starchdegradation were greater in cells which had been starved inphosphate medium in the dark than in non-starved cells. In contrast,the enhancing effect of ammonia on dark CO2 fixation was muchgreater in non-starved cells. C. pyrenoidosa was unique in thatblue light did not show any effect on its O2 uptake. (Received August 15, 1984; Accepted November 16, 1984)  相似文献   

19.
  1. Investigation was made on the influence of inorganic phosphateupon the germination of positively photoblastic tobacco seed(Nicotiana tabacum L. var. uirginica (AGDH.) COM. "Bright Yellow")induced by GA3, GA3M, kinetin, red light, and ammonium saltsof various organic acids.
  2. Inorganic phosphate increases theGAs-induced germination, andinhibits the germination causedby ammonium citrate, while itdoes not influence the germinationbrought about by GA3M, kinetin,and red light.
  3. The optimumpH for the GA3-induced germination lies in the acidicpH range,indicating that the undissociated form of GA3 is operative.The stimulatory effect of phosphate is, however, not ascribedmerely to the pH control in the mediurr. Phosphate exerts somespecific influence for which the presence of the free carboxylgroup of GAs is required.
  4. The observed contrasting effectsof phosphate on the GA3-inducedgermination (i.e., acceleration),on the one hand, and on theammonium citrate-induced germination(i.e., inhibition), onthe other, were explained by assumingthat the phosphate effectsultimately consist in acceleratingthe uptake of the carboxylicacid into the seeds.
  5. GA3M alsohas an activity of inducing the germination of tobaccoseedwithout light.
1Present address: Department of Vegetable Crops, Universityof California, Davis, California, U.S.A. (Received March 12, 1962; )  相似文献   

20.
The regulation of ammonia uptake was investigated in internodalcells of the freshwater alga Chara australis. Ammonia uptakewas estimated by monitoring (i) its depletion from the bathingsolution, (ii) the uptake of radiolabelled methylamine, an analogueof ammonia, and (iii) depletion of ammonia in the unstirredlayer with the microelectrode ion-flux estimation technique(MIFE). Distribution of methylamine (14CH3NH3+) between thevacuole and cytoplasm was estimated with efflux analysis. Whencells were bathed continuously in solutions containing ammoniaor methylamine, the uptake rates of both amines decreased over12 to 48 h despite the continuing existence of a large electrochemicalgradient favouring influx of the NH+4 and CH3NH+4 cations. Treatmentwith 1.0 to 10.0 mM MSX, an inhibitor of glutamine synthetase,caused the internal ammonia concentration to rise and reducedthe subsequent uptake of ammonia and methylamine by up to 70%within 2 h. These results suggest that the permease facilitatingNH+4/CH3NH+4 influx is under feedback or kinetic regulationfrom either internal ammonia or an intermediate of nitrogenassimilation. Treatment with metabolic inhibitors (CCCP, azide and DCMU) andsome weak acids (DMO and butyric acid) for 30 to 60 min inhibitedmethylamine uptake, but the changes in the electrical potentialdifference across the plasma membrane could not account forthe magnitude of inhibition. The rate of cytopiasmic streaming,which is an indicator of the cellular ATP concentration in Chara,was inhibited by many of these treatments. However, under certainconditions of external pH and concentration, butyric acid couldreversibly inhibit ammonia and methylamine uptake without affectingcytoplasmic streaming, demonstrating that a decrease in cytoplasmicATP concentration was not responsible for the inhibition. Theeffect of butyric acid was rapid, causing a 60% inhibition ofuptake in 15 min. We conclude that weak acids can inhibit theNH+4/CH3NH+4 permease by acidifying the cytoplasm and suggestthat this may also explain the effects of the metabolic inhibitorson ammonia and methylamine uptake. Key words: Ammonia, methylamine, uptake, regulation, Chara  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号