首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In most species, both sexes may mate with more than one partner during their life. In terrestrial isopods (woodlice) female remating can occur within a reproductive season (immediate remating) or after a period of sexual rest and sperm storage, that is in a subsequent reproductive season (delayed remating). The pattern of sperm precedence is unknown in both cases. These two female remating patterns may shape male-male competition in different ways. To elucidate both patterns of female remating and sperm precedence, we used an albinism mutation in Armadillidium vulgare to track paternity in laboratory experiments. Males had low remating success after immediate remating attempts, mainly because of the female's refractory behaviour. However, refractory behaviour seemed to be lost after female sexual rest: delayed remating attempts were as successful as first mating attempts with virgin females. In both immediate and delayed remating, competing males had similar fertilization success, but varied in sperm precedence. We hypothesize that males might induce the refractory mating behaviour in females to ensure their paternity. This could be a strategy that evolved in woodlice after the loss of precopulatory mate guarding during adaptation to the terrestrial environment. We discuss the consequences of these findings for woodlice optimal mating strategies. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

2.
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.  相似文献   

3.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

4.
Female remating is fundamental to evolutionary biology as it determines the pattern of sexual selection and sexual conflict. Remating in females is an important component of Drosophila mating systems because it affects sperm usage patterns and sexual selection. Remating is common in females of many species of Drosophila in both natural and laboratory populations. It has been reported in many insect species and also in vertebrates. Female remating is a prerequisite for sperm competition between males, and the consequences of this competition, such as sperm precedence or sperm displacement, have been reported for many species of Drosophila. Female remating is dependent on the amount of sperm stored, the male seminal fluid components, nutrition, the quantity of eggs laid, experimental design and density of flies in laboratory. Remating by a female is an insurance against male sterility and sub-fertility and increases genetic heterogeneity of female offspring. Remating gives greater female productivity in many species of Drosophila. We examined female remating with respect to sperm competition and sexual selection in Drosophila and addressed the possible benefits for females. We also reviewed the role of accessory gland fluid in remating, costs associated with remating, the genetic basis of female remating and some possible mechanisms of sperm competition in the light of last male sperm priority and paternity assurance in Drosophila and other insects. We also suggest future areas of research.  相似文献   

5.
Why do females mate multiply? A review of the genetic benefits   总被引:14,自引:0,他引:14  
The aim of this review is to consider the potential benefits that females may gain from mating more than once in a single reproductive cycle. The relationship between non-genetic and genetic benefits is briefly explored. We suggest that multiple mating for purely non-genetic benefits is unlikely as it invariably leads to the possibility of genetic benefits as well. We begin by briefly reviewing the main models for genetic benefits to mate choice, and the supporting evidence that choice can increase offspring performance and the sexual attractiveness of sons. We then explain how multiple mating can elevate offspring fitness by increasing the number of potential sires that compete, when this occurs in conjunction with mechanisms of paternity biasing that function in copula or post-copulation. We begin by identifying cases where females use pre-copulatory cues to identify mates prior to remating. In the simplest case, females remate because they identify a superior mate and 'trade up' genetically. The main evidence for this process comes from extra-pair copulation in birds. Second, we note other cases where pre-copulatory cues may be less reliable and females mate with several males to promote post-copulatory mechanisms that bias paternity. Although a distinction is drawn between sperm competition and cryptic female choice, we point out that the genetic benefits to polyandry in terms of producing more viable or sexually attractive offspring do not depend on the exact mechanism that leads to biased paternity. Post-copulatory mechanisms of paternity biasing may: (1) reduce genetic incompatibility between male and female genetic contributions to offspring; (2) increase offspring viability if there is a positive correlation between traits favoured post-copulation and those that improve performance under natural selection; (3) increase the ability of sons to gain paternity when they mate with polyandrous females. A third possibility is that genetic diversity among offspring is directly favoured. This can be due to bet-hedging (due to mate assessment errors or temporal fluctuations in the environment), beneficial interactions between less related siblings or the opportunity to preferentially fertilise eggs with sperm of a specific genotype drawn from a range of stored sperm depending on prevailing environmental conditions. We use case studies from the social insects to provide some concrete examples of the role of genetic diversity among progeny in elevating fitness. We conclude that post-copulatory mechanisms provide a more reliable way of selecting a genetically compatible mate than pre-copulatory mate choice. Some of the best evidence for cryptic female choice by sperm selection is due to selection of more compatible sperm. Two future areas of research seem likely to be profitable. First, more experimental evidence is needed demonstrating that multiple mating increases offspring fitness via genetic gains. Second, the role of multiple mating in promoting assortative fertilization and increasing reproductive isolation between populations may help us to understand sympatric speciation.  相似文献   

6.
It has been proposed that multiple sperm storage organs (spermathecae) could allow polyandrous females to control paternity. There is little conclusive evidence for this since insemination of individual spermathecae is generally not experimentally manipulable. Here, we examined sperm use patterns in the Australian redback spider (Latrodectus hasselti), which has paired, independent spermathecae. We assessed paternity when two rivals were forced to inseminate a single storage organ or opposite storage organs. When males inseminated a single spermatheca, mean paternity of the female's first mate was 79.8% (median 89.4%), and 38% of first mates achieved 100% paternity. In contrast, when males inseminated opposite organs, the mean paternity of the first mate was 49.3% (median 49.9%), only 10% of males achieved complete precedence, and paternity was normally distributed, suggesting sperm mixing. Males responded to this difference by avoiding previously inseminated female reproductive tracts. Complete sperm precedence can only be achieved if females permit males to copulate with both reproductive tracts. Females often cannibalize smaller males during their first copulation, thus limiting their paternity to 50%. These data show that multiple sperm storage organs can increase female control of paternity.  相似文献   

7.
Abstract. When females are inseminated by multiple males, male paternity success (sperm precedence) is determined by the underlying processes of sperm storage and sperm utilization. Although informative for many questions, two-male sperm competition experiments may offer limited insight into natural mating scenarios when females are likely to mate with several males. In this study, genetic markers in Tribolium castaneum are used to trace paternity for multiple sires, and to determine whether displacement of stored sperm that occurs after a third mating equally affects both previous mates, or if fertilizations are disproportionately lost by the female's most recent mate. For 20 days after triple-matings, first males retain significantly higher paternity success (relative to first male paternity in double-matings) compared with second males. These results demonstrate that when females remate before sperm mixing occurs, sperm stratification results in differential loss of sperm from the most recent mate. This study provides insight into the mechanisms underlying sperm precedence in a promiscuous mating system, and suggests that T. castaneum females could limit paternity success of particular mates by remating with more highly preferred males.  相似文献   

8.
Among many species of insects, females gain fitness benefits by producing numerous offspring. Yet actions related to producing numerous offspring such as mating with multiple males, producing oocytes and placing offspring in sub-optimal environments incur costs. Females can decrease the magnitude of these costs by retaining gametes when suitable oviposition sites are absent. We used the pomace fly, Drosophila melanogaster, to explore how the availability of fresh feeding/oviposition medium influenced female fitness via changes in offspring survivorship and the modulation of gamete release. Availability of fresh medium affected the absolute number and temporal production of offspring. This outcome was attributable to both decreased larval survival under crowded conditions and to female modulation of gamete release. Direct examination of the number of sperm retained among the different female storage organs revealed that females ‘hold on’ to sperm, retaining more sperm in storage, disproportionately within the spermathecae, when exposed infrequently to fresh medium. Despite this retention, females with lower rates of storage depletion exhibited decreased sperm use efficiency shortly after mating. This study provides direct evidence that females influence the rate of sperm depletion from specific storage sites in a way that can affect both female and male fitness. The possible adaptive significance of selective gamete utilization by female Drosophila includes lowering costs associated with frequent remating and larval overcrowding when oviposition sites are limiting, as well as potentially influencing paternity when females store sperm from multiple males.  相似文献   

9.
Whether and how individuals choose sequentially among matesis an important but largely neglected aspect in sexual selectionstudies. Here, we explore female remating behavior in the cellarspider Pholcus phalangioides. We focus on body size as one ofthe most important traits involved in mate choice. Large andsmall females (n = 216) were double mated with large or smallmales in all eight possible combinations. All females copulatedwhen virgin, but only 82% accepted a second male. The chanceof a female remating was not significantly predicted by thebody size of the second or first male or by the size differencebetween the two. In contrast, a previous study demonstrateda male size effect in that larger males monopolized femalesuntil egg laying when two males of different sizes were present.We suggest that sequential encounters are more common undernatural conditions than male monopolization of females becauseestimates of concurrent multiple paternity together with observationsin a natural population do not favor mate guarding as the predominantmating strategy in this species. It follows from our study thatthe intensity of sexual selection on male size may be greatlyoverestimated when using a competitive laboratory setting fora species in which females generally encounter mates in a sequentialfashion. Female remating probability was significantly predictedby female size, with large females remating with higher probabilitythan small females. Thus, when mating with large females, malesmay gain higher fertilization success through increased femalefecundity but also face a higher sperm competition risk.  相似文献   

10.
Sperm form and size is tremendously variable within and across species. However, a general explanation for this variation is lacking. It has been suggested that sperm size may influence sperm competition, and there is evidence for this in some taxa but not others. In addition to normal fertilizing sperm, a number of molluscs and insects produce nonfertile sperm that are also extremely morphologically variable, and distinct from fertilizing forms. There is evidence that nonfertile sperm play an indirect role in sperm competition by decreasing female remating propensity in Lepidopterans, but in most taxa the function of parasperm is unknown. We investigated the role of nonfertile (oligopyrene) sperm during sperm competition in the fresh water snail Viviparus ater. Previous studies found that the proportion of oligopyrene sperm increased with the risk of sperm competition, and hence it seems likely that these sperm influence fertilization success during competitive matings. In mating experiments in which females were sequentially housed with males, we examined a range of male characteristics which potentially influence fertilization success. We found that the size of oligopyrene sperm was the best predictor of fertilization success, with males having the longer sperm siring the highest proportion of offspring. Furthermore, we found a positive shell size and sperm concentration effect on paternity, and females with multiply sired families produced more offspring than females mating with only one male. This result suggests polyandry is beneficial for female snails.  相似文献   

11.
According to Bateman's principle, female fecundity is limited relative to males, setting the expectation that males should be promiscuous, while females should be choosy and select fewer mates. However, several surfperches (Embiotocidae) exhibit multiple paternity within broods indicating that females mate with multiple males throughout the mating season. Previous studies found no correlation between mating success and reproductive success (i.e., a Bateman gradient). However, by including samples from a broader range of reproductive size classes, we found evidence of a Bateman gradient in two surfperch species from distinct embiotocid clades. Using microsatellite analyses, we found that 100% of the spotfin surfperch families sampled exhibit multiple paternity (Hyperprosopon anale, the basal taxon from the only clade that has not previously been investigated) indicating that this tactic is a shared reproductive strategy among surfperches. Further, we detected evidence for a Bateman gradient in H. anale; however, this result was not significant after correction for biases. Similarly, we found evidence for multiple paternity in 83% of the shiner surfperch families (Cymatogaster aggregata) sampled. When we combine these data with a previous study on the same species, representing a larger range of reproductive size classes and associated brood sizes, we detect a Bateman gradient in shiner surfperch for the first time that remains significant after several conservative tests for bias correction. These results indicate that sexual selection is likely complex in this system, with the potential for conflicting optima between sexes, and imply a positive shift in fertility (i.e., increasing number) and reproductive tactic with respect to the mating system and number of sires throughout the reproductive life history of females. We argue that the complex reproductive natural history of surfperches is characterized by several traits that may be associated with cryptic female choice, including protracted oogenesis, uterine sac complexity, and sperm storage.  相似文献   

12.
In polyandrous species, male reproductive success will at least partly be determined by males' success in sperm competition. To understand the potential for post‐mating sexual selection, it is therefore important to assess the extent of female remating. In the lekking moth Achroia grisella, male mating success is strongly determined by female choice based on the attractiveness of male ultrasonic songs. Although observations have indicated that some females will remate, only little is known about the level of sperm competition. In many species, females are more likely to remate if their first mating involved an already mated male than if the first male was virgin. Potentially, this is because mated males are less well able to provide an adequate sperm supply, nutrients, or substances inhibiting female remating. This phenomenon will effectively reduce the strength of pre‐copulatory sexual selection because attractive males with high mating success will be more susceptible to sperm competition. We therefore performed an experiment designed both to provide a more precise estimate of female remating probability and simultaneously to test the hypothesis that female remating is influenced by male mating history. Overall, approximately one of five females remated with a second male. Yet, although females mated to non‐virgin males were somewhat more prone to remate, the effect of male mating history was not significant. The results revealed, however, that heavier females were more likely to remate. Furthermore, we found that females' second copulations were longer, suggesting that, in accordance with theory, males may invest more sperm in situations with an elevated risk of sperm competition.  相似文献   

13.
In gregarious species with copulation and internal fertilization, male-male competition and female cryptic choice may affect reproductive success of both sexes. We carried out a molecular analysis to study paternity and sperm use by females in the protandrous marine brooding gastropod Crepidula coquimbensis. In the field, a single female inhabits an empty hosting shell with up to six males. This gregarious behavior may promote intra-brood multiple paternity if females can store sperm from several consecutive copulations with the surrounding males. To study female sperm usage, the males sharing shelters with five different adult females were collected and preserved for paternity analysis. Females were transported alive to the laboratory and isolated for six months. After that, an additional male was offered to each of the five study females. Once the females had laid capsules, a total of 528 embryos from the five females were assigned paternity based on five microsatellite loci. Paternity analysis showed that every male sharing the empty hosting shell of a female as well as the additional male were assigned fatherhood of embryos laid by this specific female. Females can thus use sperms from multiple males including sperms stored for at least six months. In addition, in four out of the five offspring arrays, a similar contribution of each male to the brood was observed, a pattern associated with the close relationship between the number of fathers observed and the effective paternity index calculated. These results contrast with those of paternity analyses carried out in another species of the same genus, C. fornicata which is characterized by a stacking behavior in which the closest male to the female achieves the highest reproductive success. Male reproductive success may be largely influenced by the aggregation pattern and male mating opportunities in the Crepidula complex, a hypothesis to be examined further by studying other species exhibiting different grouping behavior.  相似文献   

14.
Female mating rate is an important variable for understanding the role of females in the evolution of mating systems. Polyandry influences patterns of sexual selection and has implications for sexual conflict over mating, as well as for wider issues such as patterns of gene flow and levels of genetic diversity. Despite this, remarkably few studies of insects have provided detailed estimates of polyandry in the wild. Here we combine behavioural and molecular genetic data to assess female mating frequency in wild populations of the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). We also explore patterns of sperm use in a controlled laboratory environment to examine how sperm from multiple males is used over time by females, to link mating with fertilization. We confirm that females are highly polyandrous in the wild, both in terms of population mating rates (approximately 20% of the population found in copula at any given time) and the number of males siring offspring in a single clutch (three to four males, on average). These patterns are consistent across two study populations. Patterns of sperm use in the laboratory show that the number of mates does not exceed the number of fathers, suggesting that females have little postcopulatory influence on paternity. Instead, longer copulations result in higher paternity for males, probably due to the transfer of larger numbers of sperm in multiple spermatophores. Our results emphasize the importance of combining field and laboratory data to explore mating rates in the wild.  相似文献   

15.
The accessory gland protein (Acp) ejaculate molecules of male Drosophila melanogaster mediate sexual selection and sexual conflict at the molecular level. However, to date no studies have comprehensively measured the timing and magnitude of fitness benefits to males of transferring specific Acps. This is an important omission because without this information it is not possible to fully understand the strength and form of selection acting on adaptations such as Acps. Here, we measured the fitness benefits to males of ejaculate sex peptide (SP) transfer. SP is of interest because it is a candidate for mediating sexual conflict: its frequent receipt reduces female fitness. In single matings with virgin females SP is known to increase egg laying and decrease receptivity. Hence, we predicted that SP could: (i) boost a male’s absolute paternity by increasing offspring production and delaying female remating and/or (ii) boost relative paternity share. We tested these predictions using two different lines of SP‐lacking males, in both two‐mating and free‐mating assay conditions. SP transfer conferred higher absolute, but not relative, male reproductive success. In matings with virgin females, SP transfer increased mating productivity and delayed remating and hence the onset of sperm competition. In already mated females, SP transfer did not elevate absolute progeny production, but did increase intermating intervals and hence the period over which a male could gain paternity. Consistent with this, under free‐mating conditions over an extended period, we detected a ‘per‐mating’ fitness benefit for males transferring SP. These benefits are consistent with a role for SP in mediating conflict, with SP acting to maximize short‐term fitness benefits for males.  相似文献   

16.
Single mating productivities (used as estimates of the relative number of sperm transferred) are highly correlated with several parameters used to quantify sperm competition in D. melanogster. Matings that result in the transferal of large numbers of sperm are associated with longer delay of female remating than are matings that transfer fewer sperm. Males that transfer larger numbers of sperm also suffer a smaller proportional reduction in reproductive success (smaller COST) than males transferring fewer sperm. The number of sperm transferred by a female's second mate is not related to the COST to the first male. However, there is a high positive correlation between the number of sperm transferred by the second male and P2 (the proportion of second male progeny following female remating). Thus, large sperm numbers apparently increase the reproductive success of males whether they mate with virgin or non-virgin females. Because female receptivity mediates these events, there is no need to invoke sperm displacement to explain the reproductive outcome of female remating.The timing of female remating is evaluated in terms of a receptivity-threshold model. This model suggests that female receptivity returns when some small, relatively constant, number of sperm remain in storage.  相似文献   

17.
Molecular techniques have substantially improved our knowledge of postcopulatory sexual selection. Nevertheless, studies examining sperm utilization in natural populations of nonsocial insects are rare, support for sperm selection (biased use of stored sperm, e.g. to match offspring genotypes to prevailing environmental conditions) is elusive, and its relevance within natural populations unknown. We performed an oviposition site choice experiment in the field where female yellow dung flies Scathophaga stercoraria could deposit eggs into three different microenvironments on a dung pat (the east–west ridge, north- or south-exposed side), and genotyped the offspring and sperm remaining in storage after oviposition. Females exhibited plasticity in the number of eggs deposited according to pat age. Additionally, temperature strongly influenced egg placement: the warmer the temperature, the higher the proportion of eggs laid into the north-exposed side of dung. The number of ejaculates in storage differed amongst spermathecae, and females stored sperm from more males than fathered their offspring (2.11 sires vs. 2.84 males within sperm stores). Mean last male paternity was 83.4%, roughly matching previous laboratory estimates. Importantly, we found no evidence that females selectively lay eggs of different genotypes, by biasing paternity towards certain males, depending on offspring’s microclimate. Thus, while we show female choice over number of eggs and where these are deposited, there was no evidence for sperm selection. We further revealed positive effects of multiple mating on total number of offspring and proportion of offspring emerging from the dung. We argue that the integration of field studies and laboratory experiments is essential to promote our understanding of polyandry and cryptic female choice.  相似文献   

18.
In field studies of multiple mating and sperm competition there typically is no experimental control over the number of times that a female mates, the interval between matings, or the genetic identity of multiple fathers contributing to a brood. Irrespective of this complexity, high-resolution molecular markers can be used to assign paternity with considerable confidence. This study employed two highly heterozygous microsatellite loci to assess multiple paternity and sperm displacement in a sample of broods taken from a natural population of Drosophila melanogaster. The large number of alleles present at each of the loci makes it difficult to derive explicit maximum-likelihood estimates for multiple paternity and sperm displacement from brood samples. Monte Carlo simulations were used to estimate maximum-likelihood parameters for the distribution of female remating frequency and the proportion of offspring sired by the second or subsequent mating males. Estimates were made based on genotypes scored at two distinct marker loci because they were found to give statistically homogeneous results. Fitting a Poisson distribution of number of matings, the mean number of males mated by a female was 1.82. The sperm displacement parameter estimated from doubly mated females were 0.79 and 0.86 for the two loci (0.83 for the joint estimate). The overall probability that a multiply mated female will be misclassified as singly mated was only 0.006, which indicates that microsatellites can provide excellent resolution for identifying multiple mating. In addition, microsatellites can be used to generate relatively precise estimates of sperm precedence in brood-structured samples from a natural population.  相似文献   

19.
After choosing a first mate, polyandrous females have access to a range of opportunities to bias paternity, such as repeating matings with the preferred male, facilitating fertilization from the best sperm or differentially investing in offspring according to their sire. Female ability to bias paternity after a first mating has been demonstrated in a few species, but unambiguous evidence remains limited by the access to complex behaviours, sperm storage organs and fertilization processes within females. Even when found at the phenotypic level, the potential evolution of any mechanism allowing females to bias paternity other than mate choice remains little explored. Using a large population of pedigreed females, we developed a simple test to determine whether there is additive genetic variation in female ability to bias paternity after a first, chosen, mating. We applied this method in the highly polyandrous Drosophila serrata, giving females the opportunity to successively mate with two males ad libitum. We found that despite high levels of polyandry (females mated more than once per day), the first mate choice was a significant predictor of male total reproductive success. Importantly, there was no detectable genetic variance in female ability to bias paternity beyond mate choice. Therefore, whether or not females can bias paternity before or after copulation, their role on the evolution of sexual male traits is likely to be limited to their first mate choice in D. serrata.  相似文献   

20.
Females of many insects mate multiply but why they do so remains controversial. Here we investigated the effects of multiple matings on female reproductive success of a New Zealand seed bug, Nysius huttoni. We found little evidence for females to gain material (nutritional) benefits through multiple matings because the number of matings did not have significant effect on female fecundity. Females remated to the same males or different males produced similar number of viable offspring, suggesting that females do not obtain genetic benefit from remating in terms of offspring viability. With the increase of the number of matings, however, overall fertility rate significantly increased and daily fertility rate declined significantly slower over time. These results suggest that females remate for the replenishment of sperm. Five matings are sufficient for females to maximize their reproductive success, and additional matings appear to be superfluous. However, the females of this bug mate as many as 68 times if males and females are paired for lifetime. This can be explained by the convenience hypothesis, i.e., females remate superfluously to minimize the costs of harassment by promiscuous males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号