共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Haptoglobin (Hp) is a hemoglobin-binding plasma protein consisting of two types of chains, called α and β, which originate
from a common polypeptide. In humans, but not in other mammals, Hp has been shown to occur in two allelic forms, Hp1 and Hp2,
which differ in the length of the α-chain. The longer α-chain (in Hp2) seems to have arisen by an internal duplication of
a gene segment coding for almost the entire α-chain of Hp1. In this article we show that Hp of cow (Bos taurus) contains an α-chain, the structure of which is similar to that of the human Hp2 α-chain. Furthermore, comparison of the
structure of bovine Hp and human Hp2 suggests that the bovine gene arose by a duplication of the gene segment homologous to that duplicated in human Hp2. However, a phylogenetic analysis indicates that the two genes were formed independently. The evolutionary pressure that
has led to the fixation of the Hps with a longer α-chain is not known.
Reviewing
Editor: Dr. Manyuan Long 相似文献
4.
With the aid of novel and powerful molecular biology techniques, recent years have witnessed a dramatic increase in the number of studies reporting the involvement of complex structural variants in several genomic disorders. In fact, with the discovery of Copy Number Variants (CNVs) and other forms of unbalanced structural variation, much attention has been directed to the detection and characterization of such rearrangements, as well as the identification of the mechanisms involved in their formation. However, it has long been appreciated that chromosomes can undergo other forms of structural changes - balanced rearrangements - that do not involve quantitative variation of genetic material. Indeed, a particular subtype of balanced rearrangement – inversions – was recently found to be far more common than had been predicted from traditional cytogenetics. Chromosomal inversions alter the orientation of a specific genomic sequence and, unless involving breaks in coding or regulatory regions (and, disregarding complex trans effects, in their close vicinity), appear to be phenotypically silent. Such a surprising finding, which is difficult to reconcile with the classical interpretation of inversions as a mechanism causing subfertility (and ultimately reproductive isolation), motivated a new series of theoretical and empirical studies dedicated to understand their role in human genome evolution and to explore their possible association to complex genetic disorders. With this review, we attempt to describe the latest methodological improvements to inversions detection at a genome wide level, while exploring some of the possible implications of inversion rearrangements on the evolution of the human genome. 相似文献
5.
6.
本文报道了运用FORTRAN-77语言,在SIRIUS-1微机上计算遗传信息的冗余结构D_1、D_2、D_3的程序。计算出人线粒体DNA(16569个核苷酸残基)的H_1=1.930554,H_2=3.849254,H_3=5.760944,D_1=0.069446,D_2=0.011853,D_3=0.007011。 D_1、D_2的结果表明,人线粒体DNA的信息结构远比脊椎动物DNA的低级,这支持线粒体的共生起源学说。并对D_3的结果进行了分析,对其意义作了初步探讨。 相似文献
7.
Mitochondrial DNA variation in natural populations of the mushroom Agaricus bisporus 总被引:2,自引:0,他引:2
JIANPING XU RICHARD W. KERRIGAN ANTON S. SONNENBERG PHILIPPE CALLAC PAUL A. HORGEN & JAMES B. ANDERSON 《Molecular ecology》1998,7(1):19-33
We investigated the patterns of mitochondrial DNA variation in the global population of the commercial mushroom Agaricus bisporus . Through the analysis of RFLP's among 441 isolates from nine countries in North America and Eurasia, we found a total of 140 mtDNA haplotypes. Based on population genetic analysis, there are four genetically distinct natural populations in this species, found in coastal California, desert California, France and Alberta (Canada). While 134 of the 140 mtDNA haplotypes were unique to single geographical regions, two mtDNA haplotypes, mt001 and mt002, were found in almost every population surveyed. These two mtDNA haplotypes also predominate among cultivars used throughout the world for at least the last two decades. These two mtDNA haplotypes are more similar to the cosmopolitan groups of mtDNA haplotypes than to the indigeneous clusters of mtDNA haplotypes from the two Californian regions. 相似文献
8.
Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish 总被引:13,自引:0,他引:13
For many genes, ray-finned fish (Actinopterygii) have two paralogous copies, where only one ortholog is present in tetrapods. The discovery of an additional, almost-complete set of Hox clusters in teleosts (zebrafish, pufferfish, medaka, and cichlid) but not in basal actinopterygian lineages (Polypterus) led to the formulation of the fish-specific genome duplication hypothesis. The phylogenetic timing of this genome duplication during the evolution of ray-finned fish is unknown, since only a few species of basal fish lineages have been investigated so far. In this study, three nuclear genes (fzd8, sox11, tyrosinase) were sequenced from sturgeons (Acipenseriformes), gars (Semionotiformes), bony tongues (Osteoglossomorpha), and a tenpounder (Elopomorpha). For these three genes, two copies have been described previously teleosts (e.g., zebrafish, pufferfish), but only one orthologous copy is found in tetrapods. Individual gene trees for these three genes and a concatenated dataset support the hypothesis that the fish-specific genome duplication event took place after the split of the Acipenseriformes and the Semionotiformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. If these three genes were duplicated during the proposed fish-specific genome duplication event, then this event separates the species-poor early-branching lineages from the species-rich teleost lineage. The additional number of genes resulting from this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish.[Reviewing Editor: Martin Kreitman] 相似文献
9.
10.
The present population structure of a species reflects the influence of population history as well as contemporary processes. To examine the relative importance of these factors in shaping the current population structure of Littorina keenae, we sequenced 762 base pairs of the mitochondrial ND6 and cytochrome b genes in 584 snails from 13 sites along the northeastern Pacific coast. Haplotype network analysis revealed a 'star-like' genealogy indicative of a recent population expansion. Nested clade and mismatch analyses also supported the hypothesis of sudden population expansion following a population bottleneck during the Last Glacial Maximum. Analysis of molecular variance and pairwise Phi(ST) showed no significant spatial population differentiation from Mexico to Oregon - not even across the recognized biogeographic boundary at Point Conception. This is probably due to high contemporary gene flow during the free-swimming larval stage of this snail. Surprisingly, we found a highly significant temporal population differentiation between a San Pedro sample from 1996 and one from 2005, which gave an estimate of effective population size (N(e)) of only 135. Nearly statistically significant changes in the frequency of a particular haplotype in three other populations over 2-3 years further support Hedgecock's 'sweepstakes' hypothesis. When by chance nearly all of the progeny from an aggregation of highly fecund sisters that possess a rare haplotype successfully recruit to become the next generation, the rare haplotype can become temporarily common across the entire species' range. This modification of the sweepstakes hypothesis can explain why the temporal variation that we observed was much greater than the spatial variation. 相似文献
11.
12.
Bhupendra Singh Xiurong Li Kjerstin M. Owens Ayyasamy Vanniarajan Ping Liang Keshav K. Singh 《PloS one》2015,10(10)
To date, mitochondrial DNA polymerase γ (POLG) is the only polymerase known to be present in mammalian mitochondria. A dogma in the mitochondria field is that there is no other polymerase present in the mitochondria of mammalian cells. Here we demonstrate localization of REV3 DNA polymerase in the mammalian mitochondria. We demonstrate localization of REV3 in the mitochondria of mammalian tissue as well as cell lines. REV3 associates with POLG and mitochondrial DNA and protects the mitochondrial genome from DNA damage. Inactivation of Rev3 leads to reduced mitochondrial membrane potential, reduced OXPHOS activity, and increased glucose consumption. Conversely, inhibition of the OXPHOS increases expression of Rev3. Rev3 expression is increased in human primary breast tumors and breast cancer cell lines. Inactivation of Rev3 decreases cell migration and invasion, and localization of Rev3 in mitochondria increases survival and the invasive potential of cancer cells. Taken together, we demonstrate that REV3 functions in mammalian mitochondria and that mitochondrial REV3 is associated with the tumorigenic potential of cells. 相似文献
13.
Human endogenous retroviruses (HERV) sequences account for about 8% of the human genome. Through comparative genomics and literature mining, we identified a total of 29 human-specific HERV-K insertions. We characterized them focusing on their structure and flanking sequence. The results showed that four of the human-specific HERV-K insertions deleted human genomic sequences via non-classical insertion mechanisms. Interestingly, two of the human-specific HERV-K insertion loci contained two HERV-K internals and three LTR elements, a pattern which could be explained by LTR-LTR ectopic recombination or template switching. In addition, we conducted a polymorphic test and observed that twelve out of the 29 elements are polymorphic in the human population. In conclusion, human-specific HERV-K elements have inserted into human genome since the divergence of human and chimpanzee, causing human genomic changes. Thus, we believe that human-specific HERV-K activity has contributed to the genomic divergence between humans and chimpanzees, as well as within the human population. 相似文献
14.
G. L. Gonçalves G. R. P. Moreira T. R. O. Freitas D. Hepp D. T. Passos T. A. Weimer 《Animal genetics》2010,41(3):308-310
Using ND5 sequences from mtDNA and 10 nuclear markers, we investigated the genetic differentiation of two South American Creole sheep phenotypes that historically have been bred in different biomes in southern Brazil. In total, 18 unique mtDNA haplotypes were detected, none of which was shared between the two phenotypes. Bayesian analysis also indicated two different groups (k = 2). Thus, these varieties are supported as being genotypically distinct. This situation could have resulted either from geographical isolation, associated with differences in the cultural habits of sheep farmers and in the way that flocks were managed, or more likely, from the introduction of different stocks four centuries ago. 相似文献
15.
The isolation and characterization of the first polymorphic microsatellite markers for the mangrove crab Ucides cordatus are described. The number of alleles at each locus ranged from three to 25, mean of nine alleles, in 46 crabs captured in two Brazilian mangroves. The markers averaged high levels of observed (0.709 ± 0.183) and expected (0.716 ± 0.170) heterozygosities. Departures from Hardy-Weinberg equilibrium were observed at two loci. Linkage disequilibrium tests were not significant and no evidence of null alleles was detected. All these microsatellite loci are expected to be useful in estimating fine-scale population processes of this valuable mangrove species currently subjected to excessive fishing efforts. 相似文献
16.
Breitling R Laubner D Clizbe D Adamski J Krisans SK 《Journal of molecular evolution》2003,57(3):282-291
Isopentenyl diphosphate isomerase (IDI) activates isopentenyl diphosphate (IPP) for polymerization by converting it to its highly nucleophilic isomer dimethylallyl diphosphate (DMAPP). In plants, this central reaction of isoprenoid biosynthesis is catalyzed by various highly conserved isozymes that differ in expression pattern and subcellular localization. Here we report the identification of an IDI duplication in mammals. In contrast to the situation in plants, only one of the two isoforms (IDI1) is highly conserved, ubiquitously expressed and most likely responsible for housekeeping isomerase activity. The second isoform (IDI2) is much more divergent. We demonstrate that after the initial duplication IDI2 underwent a short phase of apparently random change, during which its active center became modified. Afterwards, IDI2 was exapted for a novel function and since then has been under strong purifying selection for at least 70 million years. Molecular modeling shows that the modified IDI2 is still likely to catalyze the isomerization of IPP to DMAPP. In humans, IDI2 is expressed at high levels only in skeletal muscle, where it may be involved in the specialized production of isoprenyl diphosphates for the posttranslational modification of proteins. The significant positive fitness effect of IDI2, revealed by the pattern of sequence conservation, as well as its specific expression pattern underscores the importance of the IDI gene duplication in mammals. 相似文献
17.
Duplication and DNA segmental loss in the rice genome: implications for diploidization 总被引:30,自引:0,他引:30
* Large-scale duplication events have been recently uncovered in the rice genome, but different interpretations were proposed regarding the extent of the duplications. * Through analysing the 370 Mb genome sequences assembled into 12 chromosomes of Oryza sativa subspecies indica, we detected 10 duplicated blocks on all 12 chromosomes that contained 47% of the total predicted genes. Based on the phylogenetic analysis, we inferred that this was a result of a genome duplication that occurred c. 70 million years ago, supporting the polyploidy origin of the rice genome. In addition, a segmental duplication was also identified involving chromosomes 11 and 12, which occurred c. 5 million years ago. * Following the duplications, there have been large-scale chromosomal rearrangements and deletions. About 30-65% of duplicated genes were lost shortly after the duplications, leading to a rapid diploidization. * Together with other lines of evidence, we propose that polyploidization is still an ongoing process in grasses of polyploidy origins. 相似文献
18.
Maynard BT Kerr LJ McKiernan JM Jansen ES Hanna PJ 《Marine biotechnology (New York, N.Y.)》2005,7(6):645-658
The complete mitochondrial DNA of the blacklip abalone Haliotis rubra (Gastropoda: Mollusca) was cloned and 16,907 base pairs were sequenced. The sequence represents an estimated 99.85% of the
mitochondrial genome, and contains 2 ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes found in other metazoan mtDNA.
An AT tandem repeat and a possible C-rich domain within the putative control region could not be fully sequenced. The H. rubra mtDNA gene order is novel for mollusks, separated from the black chiton Katharina tunicata by the individual translocations of 3 tRNAs. Compared with other mtDNA regions, sequences from the ATP8, NAD2, NAD4L, NAD6, and 12S rRNA genes, as well as the control region, are the most variable among representatives from Mollusca, Arthropoda, and Rhynchonelliformea,
with similar mtDNA arrangements to H. rubra. These sequences are being evaluated as genetic markers within commercially important Haliotis species, and some applications and considerations for their use are discussed.
An erratum to this article is available at. 相似文献
19.
Amanda Ramos Cristina Santos Ligia Mateiu Maria del Mar Gonzalez Luis Alvarez Luisa Azevedo António Amorim Maria Pilar Aluja 《PloS one》2013,8(10)
Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA genome. To address this, a set of nine primer pairs designed to avoid co-amplification of nuclear DNA (nDNA) sequences of mitochondrial origin (NUMTs) was used to amplify the mitochondrial genome in 101 individuals. The analysed individuals represent a collection with a balanced representation of genders and mtDNA haplogroup distribution, similar to that of a Western European population. The results show that the frequency of heteroplasmic individuals exceeds 61%. The frequency of point heteroplasmy is 28.7%, with a widespread distribution across the entire mtDNA. In addition, an excess of transitions in heteroplasmy were detected, suggesting that genetic drift and/or selection may be acting to reduce its frequency at population level. In fact, heteroplasmy at highly stable positions might have a greater impact on the viability of mitochondria, suggesting that purifying selection must be operating to prevent their fixation within individuals. This study analyses the frequency of heteroplasmy in a healthy population, carrying out an evolutionary analysis of the detected changes and providing a new perspective with important consequences in medical, evolutionary and forensic fields. 相似文献
20.
秦巴山区中华蜜蜂种群微卫星DNA遗传分析 总被引:1,自引:0,他引:1
【目的】中华蜜蜂Apis cerana cerana是一种兼有生态价值和经济价值的授粉昆虫。本研究拟揭示秦巴山区中华蜜蜂种群遗传多态性现状,探讨中华蜜蜂的种群分化机制及其影响因素。【方法】使用8个微卫星DNA标记评估秦巴山区17个样点共979个蜂群的中华蜜蜂遗传多态性,以长白山中华蜜蜂和阿坝中华蜜蜂作为外群进行种群遗传分化分析。【结果】秦巴山区中华蜜蜂95%的差异来源于样点内,样点间遗传分化系数(Fst)为0.002~0.037,基因流参数Nm为6.51~124.75,与外群的遗传分化分析中均显示秦巴山区中华蜜蜂不存在遗传分化。平均期望杂合度(He)为0.6877±0.1098,平均观察杂合度(Ho)为0.6364±0.1367,平均有效等位基因数(Ne)为3.7488±1.6201个,平均等位基因数(Na)为7.71±2.52个,多态信息含量(PIC)为0.6418±0.1152,香农指数(I)为1.5026±0.3754,这些参数均表明微卫星遗传多态性丰富。中蜂囊状幼虫病流行过的地区,其杂合度、多态信息含量以及等位基因数均显著低于未发病地区。【结论】秦巴山区中华蜜蜂种群数量大,分布均匀,基因流水平高,在650 km距离范围内没有发生种群分化;秦巴山区中华蜜蜂微卫星遗传多态性丰富,仅部分地区中华蜜蜂遗传多态性受中蜂囊状幼虫病的选择压而降低。 相似文献