共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Natalya S Zinkevich Dmitry V Bosenko Brian A Link Elena V Semina 《BMC developmental biology》2006,6(1):13-12
Background
Laminins represent major components of basement membranes and play various roles in embryonic and adult tissues. The functional laminin molecule consists of three chains, alpha, beta and gamma, encoded by separate genes. There are twelve different laminin genes identified in mammals to date that are highly homologous in their sequence but different in their tissue distribution. The laminin alpha -1 gene was shown to have the most restricted expression pattern with strong expression in ocular structures, particularly in the developing and mature lens. 相似文献3.
4.
Mice were repeatedly infected intranasally with increasing doses of influenza virus. A correlation was observed between the incidence of metaplasia of the lung alveolar epithelium and serum antibody levels. 相似文献
5.
T1alpha, a differentiation gene of lung alveolar epithelial type I cells, is developmentally regulated and encodes an apical membrane protein of unknown function. Morphological differentiation of type I cells to form the air-blood barrier starts in the last few days of gestation and continues postnatally. Although T1alpha is expressed in the foregut endoderm before the lung buds, T1alpha mRNA and protein levels increase substantially in late fetuses when expression is restricted to alveolar type I cells. We generated T1alpha null mutant mice to study the role of T1alpha in lung development and differentiation and to gain insight into its potential function. Homozygous null mice die at birth of respiratory failure, and their lungs cannot be inflated to normal volumes. Distal lung morphology is altered. In the absence of T1alpha protein, type I cell differentiation is blocked, as indicated by smaller airspaces, many fewer attenuated type I cells, and reduced levels of aquaporin-5 mRNA and protein, a type I cell water channel. Abundant secreted surfactant in the narrowed airspaces, normal levels of surfactant protein mRNAs, and normal patterns and numbers of cells expressing surfactant protein-B suggest that differentiation of type II cells, also alveolar epithelial cells, is normal. Anomalous proliferation of the mesenchyme and epithelium at birth with unchanged numbers of apoptotic cells suggests that loss of T1alpha and/or abnormal morphogenesis of type I cells alter the proliferation rate of distal lung cells, probably by disruption of epithelial-mesenchymal signaling. 相似文献
6.
The normal phenotype of Pmm1-deficient mice suggests that Pmm1 is not essential for normal mouse development
下载免费PDF全文

Cromphout K Vleugels W Heykants L Schollen E Keldermans L Sciot R D'Hooge R De Deyn PP von Figura K Hartmann D Körner C Matthijs G 《Molecular and cellular biology》2006,26(15):5621-5635
Phosphomannomutases (PMMs) are crucial for the glycosylation of glycoproteins. In humans, two highly conserved PMMs exist: PMM1 and PMM2. In vitro both enzymes are able to convert mannose-6-phosphate (mannose-6-P) into mannose-1-P, the key starting compound for glycan biosynthesis. However, only mutations causing a deficiency in PMM2 cause hypoglycosylation, leading to the most frequent type of the congenital disorders of glycosylation (CDG): CDG-Ia. PMM1 is as yet not associated with any disease, and its physiological role has remained unclear. We generated a mouse deficient in Pmm1 activity and documented the expression pattern of murine Pmm1 to unravel its biological role. The expression pattern suggested an involvement of Pmm1 in (neural) development and endocrine regulation. Surprisingly, Pmm1 knockout mice were viable, developed normally, and did not reveal any obvious phenotypic alteration up to adulthood. The macroscopic and microscopic anatomy of all major organs, as well as animal behavior, appeared to be normal. Likewise, lectin histochemistry did not demonstrate an altered glycosylation pattern in tissues. It is especially striking that Pmm1, despite an almost complete overlap of its expression with Pmm2, e.g., in the developing brain, is apparently unable to compensate for deficient Pmm2 activity in CDG-Ia patients. Together, these data point to a (developmental) function independent of mannose-1-P synthesis, whereby the normal knockout phenotype, despite the stringent conservation in phylogeny, could be explained by a critical function under as-yet-unidentified challenge conditions. 相似文献
7.
The olfactory epithelium (OE) is derived from the olfactory placode (OP) during mouse development. At embryonic day (E) 10.0-E10.5, “early neurogenesis” occurs in the OE, which includes production of pioneer neurons that emigrate out of the OE and other early-differentiated neurons. Around E12.5, the OE becomes organized into mature pseudostratified epithelium and shows “established neurogenesis,” in which olfactory receptor neurons (ORNs) are differentiated from basal progenitors. Little is known about the molecular pathway of early neurogenesis. The homeodomain protein Six1 is expressed in all OP cells and neurogenic precursors in the OE. Here we show that early neurogenesis is severely disturbed despite the unaltered expression of Mash1 at E10.5 in the Six1-deficient mice (Six1−/−). Expression levels of neurogenin1 (Ngn1) and NeuroD are reduced and those of Hes1 and Hes5 are augmented in the OE of Six1−/− at E10.5. Pioneer neurons and cellular aggregates, which are derived from the OP/OE and situated in the mesenchyme between the OE and forebrain, are completely absent in Six1−/−. Moreover, ORN axons and the gonadotropin-releasing hormone-positive neurons fail to extend and migrate to the forebrain, respectively. Our study indicates that Six1 plays critical roles in early neurogenesis by regulating Ngn1, NeuroD, Hes1, and Hes5. 相似文献
8.
OBJECTIVE: To determine the morphologic characteristics of the nonciliated epithelium found in chondroid hamartoma of the lung. STUDY DESIGN: The morphologic characteristics and immunohistochemical reaction for surfactant protein A of the nonciliated epithelium in chondroid hamartoma of the lung was studied by immunohistochemistry. Alveolar epithelium in normal lung tissue and lung tissue surrounding primary lung cancer or metastatic lung lesions was used as a control. RESULTS: In all cases, the nonciliated epithelium in chondroid hamartoma showed the morphologic criteria of hyperplastic alveolar type II cells and a very strong positive surfactant protein A reaction in the cytoplasm when compared with alveolar epithelium of the normal lung. Similar hyperplastic type II cells were also found in the alveolar lung around metastatic or primary lung tumors. CONCLUSION: These findings may indicate that the nonciliated cells found in chondroid hamartoma of the lung are hyperplastic type II cells. This suggests that the alveolar epithelium found in chondroid hamartoma of the lung is a secondary reaction around the hamartoma and not a primary component of the lesion. 相似文献
9.
10.
Z-Z Jiang M-W Hu Z-B Wang L Huang F Lin S-T Qi Y-C Ouyang H-Y Fan H Schatten T W Mak Q-Y Sun 《Cell death & disease》2014,5(3):e1154
Survivin is the smallest member of the inhibitor of apoptosis protein (IAP) family and acts as a bifunctional protein involved in mitosis regulation and apoptosis inhibition. To identify the physiological role of Survivin in female reproduction, we selectively disrupted Survivin expression in oocytes and granulosa cells (GCs), two major cell types in the ovary, by two different Cre-Loxp conditional knockout systems, and found that both led to defective female fertility. Survivin deletion in oocytes did not affect oocyte growth, viability and ovulation, but caused tetraploid egg production and thus female infertility. Further exploration revealed that Survivin was essential for regulating proper meiotic spindle organization, spindle assembly checkpoint activity, timely metaphase-to-anaphase transition and cytokinesis. Mutant mice with Survivin depleted in GCs showed reduced ovulation and subfertility, caused by defective follicular growth, increased follicular atresia and impaired luteinization. These findings suggest that Survivin has an important role in regulating folliculogenesis and oogenesis in the adult mouse ovary. 相似文献
11.
Ueno M Itoh M Kong L Sugihara K Asano M Takakura N 《Molecular and cellular biology》2005,25(23):10528-10532
Psf1 (partner of sld five 1) forms a novel heterotetramer complex, GINS (Go, Ichi, Nii, and San; five, one, two, and three, respectively, in Japanese), with Sld5, Psf2, and Psf3. The formation of this complex is essential for the initiation of DNA replication in yeast and Xenopus laevis egg extracts. Although all of the components are well conserved in higher eukaryotes, the biological function in vivo is largely unknown. We originally cloned the mouse ortholog of PSF1 from a hematopoietic stem cell cDNA library and found that PSF1 is expressed in blastocysts, adult bone marrow, and testis, in which the stem cell system is active. Here we used the gene-targeting technique to determine the physiological function of PSF1 in vivo. Mice homozygous for a nonfunctional mutant of PSF1 died in utero around the time of implantation. PSF1-/- blastocysts failed to show outgrowth in culture and exhibited a cell proliferation defect. Our data clearly indicate that PSF1 is required for early embryogenesis. 相似文献
12.
HIF1alpha is a critical regulator of secretory differentiation and activation,but not vascular expansion,in the mouse mammary gland 总被引:9,自引:0,他引:9
Seagroves TN Hadsell D McManaman J Palmer C Liao D McNulty W Welm B Wagner KU Neville M Johnson RS 《Development (Cambridge, England)》2003,130(8):1713-1724
During pregnancy the mammary epithelium and its supporting vasculature rapidly expand to prepare for lactation, resulting in dramatic changes in the micro-environment. In order to investigate the role of oxygenation and metabolism in these processes, the oxygen-responsive component of the hypoxia-inducible factor (HIF) 1 complex, HIF1alpha, was deleted in the murine mammary gland. Although vascular density was unchanged in the HIF1alpha null mammary gland, loss of HIF alpha impaired mammary differentiation and lipid secretion, culminating in lactation failure and striking changes in milk composition. Transplantation experiments confirmed that these developmental defects were mammary epithelial cell autonomous. These data make clear that HIF1alpha plays a critical role in the differentiation and function of the mammary epithelium. 相似文献
13.
14.
15.
C H Jin A Segawa C Miyaura H Tanaka E Abe T Suda 《Journal of cellular physiology》1988,137(1):110-116
We have reported that the active form of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3], directly induces activation and fusion of mouse alveolar macrophages (Abe et al., 1983, 1984). The activated state appeared to be a prerequisite to the fusion of macrophages. Macrophages began to fuse 36 hr after adding 1 alpha,25(OH)2D3; the fusion rate attained a maximum of 70-80% at 72 hr. During the course of further investigating the mechanisms of fusion induced by the vitamin, we found that the calcium ion is closely involved in the fusion process of macrophages induced by 1 alpha,25(OH)2D3. When alveolar macrophages were cultured with 1 alpha,25(OH)2D3 in medium with graded concentrations (0.13-1.85 mM) of calcium, the fusion rate went down in parallel with the decrease of medium calcium. Neither calcium ionophore A23187 nor 12-O-tetradecanoylphorbol-13-acetate (TPA) induced fusion of freshly isolated macrophages, but the two compounds greatly promoted fusion of the macrophages pretreated for 18 hr with 1 alpha,25(OH)2D3. The vitamin effect for the first 18 hr was similar, irrespective of the medium calcium concentration. In contrast, millimolar amounts of calcium were essential in the subsequent period of incubation(18-72 hr) for inducing fusion. The activation of macrophages measured by the induction of cytotoxicity and the enhancement of glucose consumption by 1 alpha,25(OH)2D3 occurred similarly, irrespective of the medium calcium concentration. These results clearly indicate that the fusion process of alveolar macrophages induced by 1 alpha,25(OH)2D3 can be divided into two phases: 1) the calcium-independent priming phase (0-18 hr) and 2) the calcium-dependent progression phase (18-72 hr). 1 alpha,25(OH)2D3 is necessary only in the priming phase; A23187 and TPA can be substituted for 1 alpha,25(OH)2D3 in the progression phase. 相似文献
16.
Kramer BW Jobe AH Ikegami M 《American journal of physiology. Lung cellular and molecular physiology》2001,280(4):L689-L694
Alveolar macrophages are essential for the maintenance of surfactant homeostasis. We asked whether surfactant treatment would change alveolar macrophage number and whether the alveolar macrophage phenotype would become activated or apoptotic when challenged in vivo with exogenous surfactant. Surfactant pool size in mice was increased by repetitive surfactant treatments containing 120 mg/kg (110 micromol/kg) saturated phosphatidylcholine. The number of alveolar macrophages recovered by alveolar lavage decreased after the first dose by 49% and slightly increased after the second and third doses. Up to 28.5% of the macrophages became large and foamy, and their appearance normalized within 12 h. Surfactant treatment did not increase the percent of apoptotic or necrotic cells. The alveolar macrophages were not activated as indicated by no change in expression of CD14, CD16, CD54, CD95, and scavenger receptor class A types I and II after surfactant treatment. Surfactant treatment in healthy mice transiently changed the phenotype of alveolar macrophages to large and foamy without indications of changes in the surface markers characteristic of activation. 相似文献
17.
Gregor Sachse Chris Church Michelle Stewart Heather Cater Lydia Teboul Roger D. Cox Frances M. Ashcroft 《生物化学与生物物理学报:疾病的分子基础》2018,1864(3):843-850
The Fto gene locus has been linked to increased body weight and obesity in human population studies, but the role of the actual FTO protein in adiposity has remained controversial. Complete loss of FTO protein in mouse and of FTO function in human patients has multiple and variable effects. To determine which effects are due to the ability of FTO to demethylate mRNA, we genetically engineered a mouse with a catalytically inactive form of FTO. Our results demonstrate that FTO catalytic activity is not required for normal body composition although it is required for normal body size and viability. Strikingly, it is also essential for normal bone growth and mineralization, a previously unreported FTO function. 相似文献
18.
M. Kasper G. Haroske D. Schuh M. Müller R. Koslowski K -W. Wenzel K. Sakai 《Histochemistry and cell biology》1994,102(5):345-352
The colocalization of surfactant protein A (SP-A) and the alveolar macrophage markers ED1 and RM-1, as well as various lectins of the N-acetyl-galactosamine group [Maclura pomifera lectin (MPA), Dolichos biflorus lectin (DBA), soybean agglutinin (SBA)] and of the mannose group [Canavalia ensiformis lectin (ConA), Galanthus nivalis lectin (GNA)] was studied in normal and fibrotic rat lung tissues. In normal tissue, SP-A was located preferentially in the alveolar macrophage subpopulation lacking specific binding sites for lectins of the N-acetylgalactosamine group (DBA and SBA), although 50% of MPA-binding macrophages contained SP-A. The ED1-positive cells were SP-A-negative, whereas SP-A uptake could be detected among the RM-1 immunoreactive as well as the ConA and GNA binding macrophages. In fibrotic lung tissue, however, a small number of .DBA and SBA binding macrophages contained SP-A and the percentage of GNA and ConA binding alveolar macrophages exhibiting SP-A immunoreactivity was reduced. Additionally, the number of ED1+/SP-A+ macrophages was found to be increased. Immunoelectron microscopy revealed accumulation of SP-A in the extracellular space. The differing SP-A content in different alveolar macrophage subpopulations suggests a more complex mechanism of uptake and degradation of surfactant proteins in normal and pathological conditions, which cannot simply be explained by the glycoconjugate pattern on the surface of alveolar macrophages. 相似文献
19.
20.
Habermehl D Parkitna JR Kaden S Brügger B Wieland F Gröne HJ Schütz G 《Molecular endocrinology (Baltimore, Md.)》2011,25(8):1280-1288
Corticosteroid treatment is an established therapy for preterm infants, and germline inactivation of the glucocorticoid receptor (GR) gene in the mouse leads to respiratory failure and postnatal lethality. Although glucocorticoids have been thought to critically act in epithelial cells inducing the functional maturation of the lung, inactivation of the GR gene exclusively in the epithelium of the developing murine lung did not impair survival. In contrast, mice lacking GR specifically in mesenchyme-derived cells displayed a phenotype strongly reminiscent of GR knockout animals and died immediately after birth. Detailed analysis of gene expression allows the conclusion that GR acts in cells of the fibroblast lineage controlling their proliferation rate and the composition of the extracellular matrix. 相似文献