首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants, resistant to neamine and spectinomycin, have been isolated from S. typhimurium and S. dublin highly virulent strains. The neamine-resistant mutants can be divided into 3 classes in accordance with their sensitivity to streptomycin: sensitive, resistant to low and high concentrations of this antibiotic. The transduction analysis with the use of bacteriophage P 22 has revealed that the spectinomycin-resistant mutations under study are spc A mutations, while the mutations leading to resistance to neamine in class Near Strr 500 are nea B mutations. The mutation leading to resistance to spectinomycin (spc A) has been found to produce no changes in the virulence of salmonellae in the intraperitoneal infection of mice. The mutations leading to resistance to neamine and streptomycin (nea B and str A) have been found to decrease virulence.  相似文献   

2.
The genetic analysis of attenuated mutants, class Nea(r) Str(s), with the use of bacteriophage P 22 has shown that mutation rendering the mutants resistant to neamine is localized in gene nea A. In experiments with the intraperitoneal infection of mice, the appearance of this mutation in S. typhimurium and S. dublin virulent strains has been found to lead to the decrease of virulence in 100% of clones. On the basis of the data obtained in this investigation, region str-spc in S. typhimurium and S. dublin has been mapped. In contrast to mutation spc A, mutations nea A and str A have been shown to inhibit the action of amber suppressor. The investigation has confirmed the regularity, previously established for Shigella flexneri, concerning the relationship between the influence of mutations, occurring in the genes which determine resistance to neamine and streptomycin and control the synthesis of ribosomal proteins S4, S5, S12 and S17, on the virulence of S. typhimurium and S. dublin and the effect of these mutations on the accuracy of the translation of genetic information in the biosynthesis of protein: mutation spc A has been found to produce no changes in the virulence of salmonellae, while mutations nea A and str A cause its loss. Salmonella strains carrying mutations nea A and nea B have shown pronounced protective properties in experiments on mice.  相似文献   

3.
Several hundred independent bacteriocin-tolerant mutants have been isolated without mutagenesis from three strains of Escherichia coli. On the basis of patterns of sensitivity to eight different colicins, over 85% of these mutants could be grouped into four classes. Two classes of mutants, class A and class B, are equivalent to tolA and tolB type mutants. We found tolA and tolB mutants were sensitive to the antibiotic bacitracin. The other two classes of bacteriocin-tolerant mutants, class F and class G, are distinguished from other types of colicin-tolerant mutants on the basis of sensitivity to colicins, dyes, detergents, antibiotics, and chelating agents. The mutation in class F and class G mutants is located between 21 to 23 min on the E. coli chromosome. We propose to designate the loci of these mutations as tolF and tolG, respectively.  相似文献   

4.
We describe three new classes of Salmonella typhimurium mutants with increased sensitivity to hydrophobic agents. In contrast to many previously described mutants, the phage sensitivity pattern of these mutants did not give any indication of defective lipopolysaccharide. Furthermore, they had no detectable changes in their phospholipid or outer membrane protein composition, and their growth rate and cell morphology were normal. Class B mutants were nearly as sensitive to novobiocin, fusidic acid, erythromycin, rifampin, and clindamycin as are deep rough (heptoseless) mutants; in addition they were sensitive to methicillin, penicillin (to which heptoseless mutants are resistant), gentian violet, and anionic and cationic detergents. Class A and C mutants had less sensitive, but characteristic phenotypes. None of the three classes were sensitive to serum bactericidal action. The class B mutation mapped between map positions 7 and 11 on the S. typhimurium chromosome, and the class C mutation mapped between positions 5 and 7. The map position for the class A mutation remained undefined, but it was separate from the class B and C mutations and, like those, did not correspond to any gene loci known to participate in the synthesis of major outer membrane constituents.  相似文献   

5.
6.
Summary The mutagenic activity of ozone was investigated by the isolation of streptomycin-resistant mutants (Sm1) in different strains of Escherichia coli. RecA, lexA, polA and parental strains were ozonated and streptomycin-resistant mutants were scored after a short or long phenotypic delay. Our results suggest that ozone is an active mutagen for forward mutation and that this oxidizing agent could be able to induce mutations via two mechanisms: directly and indirectly by the rec-lex error-prone repair system.  相似文献   

7.
Three classes of nonidentical streptomycin-resistant mutations were distinguished in Escherichia coli by their effect on the efficiency of suppression by an amber suppressor gene, sup E. The first class of mutation caused a strong restriction in efficiency of suppression of an amber codon in various cistrons of phage lambda and in an alkaline phosphatase structural gene of E. coli. The second class caused weak restriction, and the third class caused no restriction. The restrictive effect of the streptomycin resistance mutation of the first class on the sup E gene was reduced by addition of streptomycin. This mutation had little effect on efficiencies of suppression by amber suppressor genes sup D and sup F. Analyses on the alkaline phosphatase formed in the suppressor strain indicated that mutation to restrictive streptomycin resistance causes a reduction in translation of the amber codon in the alkaline phosphatase structural gene.  相似文献   

8.
To allow for the molecular analysis of halorespiration by the strictly anaerobic gram-positive bacterium Desulfitobacterium dehalogenans, halorespiration-deficient mutants were selected and characterized following insertional mutagenesis by the conjugative transposon Tn916. To facilitate rapid screening of transconjugants, a highly efficient method for the growth of single colonies on solidified medium has been developed. A streptomycin-resistant mutant of D. dehalogenans was isolated and mated with Enterococcus faecalis JH2-2 carrying Tn916. Insertion of one or two copies of Tn916 into the chromosome of D. dehalogenans was observed. From a total of 2,500 transconjugants, 24 halorespiration-deficient mutants were selected based upon their inability to use 3-chloro-4-hydroxyphenylacetic acid as an electron acceptor. Physiological characterization led to the definition of three phenotypic classes of mutants that differed in their ability to use the additional terminal electron acceptors nitrate and fumarate. The activities of hydrogenase and formate dehydrogenase were determined, and the transposon insertion sites in selected mutants representing the different classes were analyzed on the sequence level following amplification by inverse PCR. The results of the molecular characterization as well as the pleiotropic phenotypes of most mutants indicate that genes coding for common elements shared by the different respiratory chains present in the versatile D. dehalogenans have been disrupted.  相似文献   

9.
A procedure for the quantitative determination of induced streptomycin-resistant mutants in E. coli was applied to study and compare mutation induction by the organophosphate dichlorvos and by methyl methanesulfonate (MMS). Both compounds increased the frequency of mutants even under conditions where no inactivation of cell was observed. Mutation induction by these agents as a function of both concentration and exposure time was measured. The dose-response curves found with both mutagens were non-linear; atp higher doses more mutants were induced per unit dose than at lower doses. Possible relationships between dose-effect curves and the chemical nature of alkylating mutagenic agents are discussed.  相似文献   

10.
Non-enterotoxigenic porcine Escherichia coli strains belonging to the serogroup O115 have been associated with septicaemia and diarrhoea. Putative factors important in the pathogenicity of E. coli of serogroup O115 include fimbrial antigen F165, haemagglutination (MRHA), lipopolysaccharide, serum resistance, capsule and production of aerobactin. Using TnphoA transposon insertion mutagenesis, two classes of mutants were obtained from E. coli of serotype O115:F165 with respect to the phenotypic expression of fimbrial antigen F165 and MRHA of sheep erythrocytes: class I, F165-MRHA-, serum resistant; class II, F165+MRHA-, serum resistant. In a chicken lethality model, class I mutants were either virulent or of intermediate virulence, while class II mutants were of intermediate virulence. Alkaline phosphatase activity of class I and class II TnphoA mutants showed similar environmental regulation to that of fimbrial antigen F165. Moreover, class I and class II mutants were mutated in the prs-like locus, and lacked a 18.5 kDa and/or a 17.5 kDa fimbrial band.  相似文献   

11.
A variety of rational approaches to attenuate growth and virulence of vesicular stomatitis virus (VSV) have been described previously. These include gene shuffling, truncation of the cytoplasmic tail of the G protein, and generation of noncytopathic M gene mutants. When separately introduced into recombinant VSV (rVSV), these mutations gave rise to viruses distinguished from their "wild-type" progenitor by diminished reproductive capacity in cell culture and/or reduced cytopathology and decreased pathogenicity in vivo. However, histopathology data from an exploratory nonhuman primate neurovirulence study indicated that some of these attenuated viruses could still cause significant levels of neurological injury. In this study, additional attenuated rVSV variants were generated by combination of the above-named three distinct classes of mutation. The resulting combination mutants were characterized by plaque size and growth kinetics in cell culture, and virulence was assessed by determination of the intracranial (IC) 50% lethal dose (LD(50)) in mice. Compared to virus having only one type of attenuating mutation, all of the mutation combinations examined gave rise to virus with smaller plaque phenotypes, delayed growth kinetics, and 10- to 500-fold-lower peak titers in cell culture. A similar pattern of attenuation was also observed following IC inoculation of mice, where differences in LD(50) of many orders of magnitude between viruses containing one and two types of attenuating mutation were sometimes seen. The results show synergistic rather than cumulative increases in attenuation and demonstrate a new approach to the attenuation of VSV and possibly other viruses.  相似文献   

12.
Forward streptomycin-resistant mutations and reverse mutations at the ARG7 locus after UV irradiation were studied in two photoreactivation-deficient mutants ofChlamydomonas reinhardtii, Phrl and Phr2. The mutant Phrl was more mutable than Phr2. Caffeine increased survival and reduced mutation rate of streptomycin-resistant mutations induced in both photoreactivation-deficient strains. Two different alleles of ARG7 locus (arg2 and arg7) were introduced into photoreactivation-deficient mutants. It was found that in the presence of both alleles, the frequency of mutants resistant to streptomycin was reduced. The reduction was more remarkable in the presence of arg2. But also under these conditions Phr1 was more mutable than Phr2.  相似文献   

13.
A replica-plating technique has been adopted for the isolation of mutagen-sensitive mutants of Chinese hamster V79 and CHO cell lines. After the mutagenic treatment (ENU) clones derived from these cell lines were replica plated into micro wells and replicas were treated with UV (254 nm), X-ray, MMC, EMC or MMS. Clonal cell lines which demonstrated mutagen sensitivity were retested by the determination of survival. Only one UV-sensitive line was obtained in 1500 clonal lines derived from CHO cells. This mutant appeared also sensitive to 4NQO and MMC. The sensitivity to UV and MMC was 2-3-fold enhanced, while the increase in sensitivity to 4NQO was 4-5-fold. In V79 cells 9 mutagen-sensitive lines were found after screening of 500 clonal lines; six of them showed increased sensitivity towards UV, two towards MMC, and one cell line was found to be X-ray sensitive. A considerable cross-sensitivity for the various agents was found among the isolated mutants. When a 2-fold increase is taken as a minimum to indicate mutagen sensitivity 6 mutants were sensitive to UV, 8 mutants were sensitive to MMC, 6 mutants were sensitive to 4NQO and 4 mutants were sensitive to X-rays. The difference in sensitivity to UV versus 4NQO makes it unlikely that 4NQO can be considered as a UV-mimetic agent. The sensitivity to MMC appears to fall into 2 classes: a class with moderate sensitivity (2-8-fold) and a class with high sensitivity (30-100-fold). The presence of similar classes is indicated for UV. Except for the two lines V-E5, V-B7 and the two lines V-H11, V-H4 all obtained mutants have a different spectrum of mutagen sensitivities which suggests that different genetic alterations underly these effects. The observed high frequency of mutagen-sensitive mutants in V79 cells, although unexpected and substantially higher than those published for CHO cells and L5178Y cells, can still be explained by the presence of functionally hemizygous loci.  相似文献   

14.
Induction of the cytoplasmic petite mutation in yeast by 5-fluorouracil (5FU) and 5-fluorocytosine (5FC) is known to depend on the incorporation of 5FU into some species of RNA; 5FC is active only following deamination to 5FU. Several mutants have now been isolated which are resistant to petite mutagenesis by 5FU but remain sensitive to growth inhibition by this analogue. They fall into two classes: those in class I are also resistant to mutagenesis by 5FC, while class II mutants retain partial sensitivity to the latter agent. The growth of both classes is sensitive to 5FC. The behavior of class II mutants requires that exogenous 5FU is specifically excluded from the site of synthesis of the target RNA involved in petite mutagenesis, while 5FC has access to it. The most likely explanation is that the RNA concerned is synthesized in the mitochondria, and that the mitochondrial membranes of class II mutants are impermeable to 5FU but not 5FC. This is supported by the finding that the membrane-active agent dimethylsulfoxide restored 5FU sensitivity to this class of mutants. No such effect was observed with class I mutants, and these are thought to have altered mitochondrial RNA-synthesizing systems which are unable to recognize fluorinated nucleotides.During the course of this work, S. G. O. was supported by a Medical Research Council Scholarship.  相似文献   

15.
Streptococcus mutans produces glucan-binding proteins (Gbps), which appear to contribute to the virulence of S. mutans. GbpA and GbpC genes were inactivated by the insertion of antibiotic-resistant genes into each gbp gene of S. mutans MT8148 to generate Gbp-defective mutants. Sucrose dependent adherences of the GbpA- and GbpC-defective mutants were found to be significantly lower than those of their parent strains MT8148. Caries inducing activity of the mutants in rats was significantly lower than that of strain MT8148R (streptomycin-resistant strain of MT8148). These results suggest that GbpA and GbpC participate in cellular adherence to tooth surfaces and contribute to the cariogenicity of S. mutans.  相似文献   

16.
Temperature-sensitive mutants of Escherichia coli defective in the replication of the plasmid colicinogenic factor E1 (ColE(1)) were isolated following mutagenesis of E. coli K12 strain carrying the ColE(1) factor. Following the mutagenic treatment an enrichment procedure utilizing the replacement of thymine with bromouracil in the ColE(1) DNA duplicated at the restrictive temperature was used. The mutants isolated following this enrichment step were the result of a mutation event either in the host chromosome or in the ColE(1) plasmid. The host mutants fell into three phenotypic classes based on the effect each mutation had on the maintenance of a variety of other extrachromosomal DNA elements. Phenotypic class I mutations affected all E. coli plasmids, both the I and F sex factor types as well as the ColE(1) factor. Phenotypic class II mutations affected the maintenance of the ColE(1) and the F sex factor type plasmids and not the I type, while phenotypic class III mutations affected only ColE(1) replication. None of these mutations was found to have a significant effect on the replication of the E. coli chromosome. The plasmid-linked mutations fell into two phenotypic classes on the basis of the ability of the Flac episome to complement the mutation in the ColE(1) plasmid.  相似文献   

17.
S Kathariou  P Metz  H Hof    W Goebel 《Journal of bacteriology》1987,169(3):1291-1297
A genetic determinant essential for hemolysin production by Listeria monocytogenes has been inactivated by insertion of transposon Tn916 into L. monocytogenes DNA. The transposon was transferred by means of conjugation of a streptomycin-resistant L. monocytogenes recipient strain with Streptococcus faecalis CG110 on membrane filters. Among the tetracycline-resistant transconjugants, mutants were detected which had lost hemolytic activity. When tested in a mouse model, these mutants appeared to have lost the virulence that characterizes the parental strain. An extracellular protein of 58,000 apparent molecular weight was eliminated in the nonhemolytic mutants. In some of the mutants, the decrease in the production of the 58,000-dalton protein was accompanied by the production of a new protein of 49,000 apparent molecular weight. Hemolytic revertants regained the hemolytic phenotype and virulence and produced the extracellular protein that characterizes the recipient strain. Hybridization studies with Tn916 DNA indicated that the transposon is present in EcoRI and HindIII fragments of the nonhemolytic mutants. Single copies of Tn916 were detected in the chromosomal DNA of two of the three nonhemolytic mutants that were studied in detail. In hemolytic, tetracycline-sensitive revertants Tn916 appeared to be completely excised from the chromosome.  相似文献   

18.
Studies on partially virulent mutants of lambda bacteriophage   总被引:3,自引:0,他引:3  
Summary Genetic studies coupled with functional analysis of gene action have demonstrated that there are two classes of partially virulent CP mutants which differ in the mechanism by which they overcome the immunity repressor. Class I contains a mutation within the cI region which causes the modified cI product to negatively complement the active repressor present in the immune cells. Class II achieve their virulence by a mutation which renders the x-y-cII-O operon insensitive to repression.  相似文献   

19.
Summary Growth of a green streptomycin-resistant strain of Chlamydomonas reinhardi on a sub-lethal concentration of streptomycin on agar led to the appearance of yellow mutant cells in almost every colony. The time of appearance of the mutants varied greatly among the 9 isolates studied, each of which was selected as a single colony after repeated cloning of the parental strain. 2 isolates gave rise to colonies which responded rapidly to streptomycin (class I), 2 isolates produced yellow sub-clones as papillae only after formation of normal green colonies (class II), and 2 isolates produced stable yellow sub-clones only after a second subculture on streptomycin-agar (class III). 3 isolates were mixtures of classes II and III.The evidence that these yellow mutants arose under the mutagenic action of streptomycin is discussed in relation to the alternative possibility of their selection by the drug from a pool of pre-existing mutants. The physiological and genetic effects of streptomycin upon chlorophyll formation in Chlamydomonas are compared with reported effects of the drug upon the green flagellate, Euglena gracilis.Dedicated with appreciation and affection to Professor Dr. E. G. Pringsheim on the occasion of his 80th birthday.  相似文献   

20.
A positive selection procedure is described for the isolation of hydrogenase-defective mutant strains of Escherichia coli. Mutant strains isolated by this procedure can be divided into two major classes. Class I mutants produced hydrogenase activity (determined by using a tritium-exchange assay) and formate hydrogenlyase activity but lacked the ability to reduce benzyl viologen or fumarate with H2 as the electron donor. Class II mutants failed to produce active hydrogenase and hydrogenase-dependent activities. All the mutant strains produced detectable levels of formate dehydrogenase-1 and -2 and fumarate reductase. The mutation in class I mutants mapped near 65 min of the E. coli chromosome, whereas the mutation in class II mutants mapped between srl and cys operons (58 and 59 min, respectively) in the genome. The class II Hyd mutants can be further subdivided into two groups (hydA and hydB) based on the cotransduction characteristics with cys and srl. These results indicate that there are two hyd operons and one hup operon in the E. coli chromosome. The two hyd operons are needed for the production of active hydrogenase, and all three are essential for hydrogen-dependent growth of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号