首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foreign plasma injection induces a profound and somewhat complex change in the size and location of the colony forming unit (CFU) cell compartment. Injection of foreign plasma before irradiation induces an increase in CFU cells as judged by endogenous colonies as well as by a modification of the endogenous method which excludes spleen colony formation from in situ spleen cells. However, the enlargement does not take place in the most populous CFU cell areas, the spleen and marrow. The concentration and/or total number of CFU cells in spleen and marrow was not increased by plasma injection whether judged by the number of transplantable cells or by the number of migrating endogenous cells. These studies emphasize the complexity of this cellular system and suggest that the use of but one type of stem cell assay may yield results which do not reflect changes within the total compartment. Evidence for cell damage in vitro as a factor influencing results in studies involving transplantation was searched for but was not forthcoming.  相似文献   

2.
The proportion of murine haemopoietic stem cells that settled in the spleen, after transplanting spleen cells into lethally-irradiated recipient mice, was found by comparing the number of spleen colonies obtained by transplanting a whole spleen with an estimate of the total number of colony-forming units (CFU) present in the intact spleen. the latter number was estimated assuming that endogenous spleen colonies were produced from surviving spleen-derived CFU which exhibited the same survival parameters as transplanted CFU.
Account was taken of the post-irradiation loss of CFU from the spleen in the endogenous assay, which was found to be a reasonably constant factor for doses higher than about 100 rad X-rays.
The total measured number of CFU/spleen from transplantation was less than the number calculated in the intact spleen by a factor, the primary f number, of 0.03 ± 0.02.  相似文献   

3.
The mammalian c-kit receptor tyrosine kinase gene is required during embryogenesis for the survival and/or proliferation of three migrating stem cell populations: primordial germ cells, haematopoietic stem cells and neural crest-derived melanoblasts. We have cloned a Xenopus gene, XKrkl, whose closest relative is c-kit. Differences in the expression pattern suggest that XKrkl is not the Xenopus homologue of c-kit; however, it is expressed in a migrating stem cell population, the precursor cells for the mechanosensory lateral line system. XKrkl is the first reported marker for lateral line stem cells.  相似文献   

4.
Experiments were carried out to compare the therapeutic efficiency (TE: number of CFU required to reduce the mortality from 100 to 50 per cent) of spleen or marrow (BM) stem cells (CFU) grafted into lethally irradiated mice (807 rad) which had been previously treated with 89Sr or splenectomized. It was found that during the reconstitution of the haemopoietic organs, the spleen does not provide more than 10 per cent of the functional cells necessary for survival. Besides, the BM-derived CFU growing in 89Sr marrow-ablated mice remain twice as efficient as the spleen-derived ones. Similarly, spleen-derived CFU transplanted into splenectomized mice are half as efficient as BM-derived ones. It may therefore be assumed that haemopoietic stem cells grafted into a foreign microenvironment retain their original kinetics of growth and differentiation during 7 to 10 days after their transplantation.  相似文献   

5.
Pancreatic adenocarcinoma is currently the fourth leading cause for cancer-related mortality. Stem cells have been implicated in pancreatic tumor growth, but the specific role of these cancer stem cells in tumor biology, including metastasis, is still uncertain. We found that human pancreatic cancer tissue contains cancer stem cells defined by CD133 expression that are exclusively tumorigenic and highly resistant to standard chemotherapy. In the invasive front of pancreatic tumors, a distinct subpopulation of CD133(+) CXCR4(+) cancer stem cells was identified that determines the metastatic phenotype of the individual tumor. Depletion of the cancer stem cell pool for these migrating cancer stem cells virtually abrogated the metastatic phenotype of pancreatic tumors without affecting their tumorigenic potential. In conclusion, we demonstrate that a subpopulation of migrating CD133(+) CXCR4(+) cancer stem cells is essential for tumor metastasis. Strategies aimed at modulating the SDF-1/CXCR4 axis may have important clinical applications to inhibit metastasis of cancer stem cells.  相似文献   

6.
Most of the current methods to capture stem cells are very complicated. Our new discovery of acquiring adult stem cells by implanting three dimension (3-D) porous material into the spatium intermusculare of mice hind limbs would bring hope to achieve autologous stem cells transplantation. We discovered that a great number of cells migrated into the 3-D porous material implanted in vivo. Furthermore, the migrating cells exhibited stem cell properties (CD34(+), Sca-1(+), GFAP(+), alphafetoprotein(+)) and were hematogeous (CD45(+)) and CD105(+). The ability of migrating cells to undergo differentiation into hematopoietic lineages was tested with methylcellulose medium. These findings demonstrate that the cells captured from spatium intermusculare by implanting 3-D porous material exhibit the characteristics of stem cells.  相似文献   

7.
The early hematopoietic regeneration in a depopulated segment of femur shaft is compared in +/+ and W/Wv mice and in W/Wv mice previously treated with +/+ marrow. Since the W/Wv mouse has an intrinsic CFU deficiency on spleen colony assay and since immigrant cells play a negligible role in the onset of regeneration after marrow extirpation, the W/Wv(+/+) chimera provides a model for evaluation of the contribution of residual cells to the regenerative program. There was little difference in the relative recovery of CFU in +/+, W/Wv, and W/Wv-(+/+), Moreover, +/+ derived CFU were responsible for nearly all of the CFU repopulation in chimeric mice. Thus, recovery of hemic cellularity must be due to residual stem cells rather than to stem cells derived by transformation of more primitive mesenchymal elements. The residual CFU are probably intimately associated with bone, most likely within the endosteum and haversian system.  相似文献   

8.
The capacity of stem cells (CFU) for self-renewal was tested by transplanting normal bone marrow (primary transplantation) and bone marrow which had been subjected to one or two earlier transplantations (secondary and tertiary transplantation) into lethally irradiated syngeneic recipients. It was found that the capacity for self-renewal is diminished within the first weeks after one or more previous transplantations. This ability of stem cells recovered after a longer interval after the previous transplantation. The time required for this recovery depended upon the number of previous transplantations and amounted to more than 1 or 2 months after one or two transplantations respectively. Shortly after transplantation the CFU/nucleated cell ratio in bone marrow was below normal and its decrease was more pronounced when the bone marrow had been transplanted more often. An increase of the ratio towards normal values was observed in the course of one month after the last transplantation. Measurements of the spleen colony size after transplantation of normal and re-transplanted bone marrow indicated that CFUs from re-transplanted marrow gave slightly smaller spleen colonies than those of normal marrow.
It is concluded that the decreased self-renewal of stem cells shortly after previous transplantations is probably not due to a limitation in the number of normal mitoses they can perform, but to a loss of stem cells by transfer to the compartment of differentiating cells.  相似文献   

9.
Stimulation of endogenous and exogenous colony formation by antilymphocyte serum has been observed. The effect of ALS on endocolonization is associated with promotion of CFU recirculation. ALS-induced stimulation of exocolonization was observed only with adult bone marrow cells of normal mice. ALS caused no effect on colony formation induced by embryonic liver cells or rapidly proliferating haemopoietic cells of early radiation chimeras. ALS did not cause an increase either in the content of CFU in the spleen or in their proliferating fraction. It is assumed that the ALS effect is exerted on the microenvironment and not directly on the CFU, as the result of which short-range regulation of haemopoietic stem cell changes.  相似文献   

10.
Factors affecting the circulation of haemopoietic stem cells (CFU) in the peripheral blood of mice were investigated. I.v. injection of sublethal doses of endotoxin, trypsin and proteinase appeared to raise the number of CFU per ml blood from about 30–40 to about 300–400 or more within 10 min. The effect was smaller when smaller doses of the substances were injected. After this initial rise the number of circulating cells returned to normal in a few hours. Following endotoxin there was a second rise which started 2–3 days after injection and attained a peak on the 6th–7th day. The first rise is explained as a mobilization of stem cells from their normal microenvironments into the blood stream; the second rise is considered to reflect proliferation of CFUs in the haemopoietic tissues. The spleen seems to be acting as an organ capturing CFUs from the blood and not as a source adding stem cells to the blood.
The early mobilization of CFU after endotoxin injection did not coincide with a mobilization of neutrophils. The number of circulating band cells was increased during the first hours.
The importance of 'open sites'in the haemopoietic tissue for capturing CFUs was studied by emptying these sites through a lethal X-irradiation and injecting normal bone marrow cells. When a greater number of syngeneic bone marrow cells was injected intravenously, the level of circulating CFU in irradiated mice was slightly lower than the level in unirradiated mice during the first hours.  相似文献   

11.
Different amount of intact or irradiated bone marrow from syngenous donors was administered to mice irradiated with a lethal dose. There was revealed a linear dependence of the number of the 8-9-day colonies grown in the bone marrow of the femur on the amount of the administered cells, and an exponential dependence on the irradiation dose. Regularity of the stem cell cloning in the bone marrow was analogous to such in the spleen. Radiosensitivity of the colony-forming units (CFU) differed depending on the site (the spleen, the bone marrow) of their colony formation. The CFU settling in the marrow proved to be more radioresistant (D(0) equalled 160-200 P) in comparison with the CFU settling in the spleen (D(0) constituted 80-100 P). It is supposed that a different radiosensitivity of the CFU was caused by the presence of heterogenic population of the stem cells and also by specific peculiarities of the organ (the spleen, the bone marrow) in which the colonies formed.  相似文献   

12.
13.
Colony-forming cells (CFU), which have the general properties of hemopoietic “stem” cells, appear to be augmented in the mouse fetal liver from 12–18 days gestation and then decrease in the newborn. This finding suggests that few, if any, hemopoietic “stem” cells remain in the adult liver, an organ which appears to be unable to function erythropoietically, even at times of severe crises. In the spleen, and active adult as well as embryonic hematopoietic organ, the total number of CFU increases from 18 days gestation until at least 7 days after birth. Spleen and liver CFU augmentation seems to occur in cojunction with an analogous expansion of non-hematopoietic cells. The data suggests, in fact, that while there is an increase in the total number of liver CFU, there is also a dilution of liver CFU in the total cell population at successively later gestational ages.  相似文献   

14.
The distribution of interstitial stem cells along the Hydra body column was determined using a simplified cloning assay. The assay measures stem cells as clone-forming units (CFU) in aggregates of nitrogen mustard inactivated Hydra tissue. The concentration of stem cells in the gastric region was uniform at about 0.02 CFU/epithelial cell. In both the hypostome and basal disk the concentration was 20-fold lower. A decrease in the ratio of stem cells to committed nerve and nematocyte precursors was correlated with the decrease in stem cell concentration in both hypostome and basal disk. The ratio of stem cells to committed precursors is a sensitive indicator of the rate of self-renewal in the stem cell population. From the ratio it can be estimated that <10% of stem cells self-renew in the hypostome and basal disk compared to 60% in the gastric region. Thus, the results provide an explanation for the observed depletion of stem cells in these regions. The results also suggest that differentiation and self-renewal compete for the same stem cell population.  相似文献   

15.
Using a method in which embryo fibroblasts were used as feeder layers, the colony forming capacity in agar of a variety of mouse haemopoietic suspensions was compared with their CFU s content. A striking parallelism between the results of the two assays was found. In addition, under certain conditions higher numbers of CFU s could be retrieved from 5-day-old agar colonies than were originally plated, indicating that the CFC a (Colony Forming Cell agar) may fulfil the requirements of pluripotency as well as of self-renewal, both prerequisites for any haemopoietic stem cell candidate. Although our data by no means provide direct proof that the CFC s and the CFC a are identical, they certainly support such a concept. the contradictory findings by others that CFU s and CFU c (Colony Forming Unit culture) can be separated on a velocity gradient is attributed to different culture conditions, in other words, that their CFU cè are not identical with our CFU a .
Our findings also indicate that for mouse cells our soft agar colony assay meets the criteria of a quantitative assay for haemopoietic stem cells and that extension of this technique to bone marrow of primates including humans seems to be justified.  相似文献   

16.
目的:验证双标记生物发光成像活体观测MSCs在肝癌裸鼠模型向肿瘤病灶的趋化作用的可行性。方法:应用fluorescence(荧光)与bioluminescence(生物发光)两种成像方法,对MSCs进行CM-Di I荧光标记及对人肝癌细胞Hep G2进行Fluc-慢病毒感染并由此建立裸鼠肝癌模型,构建双标记成像系统,应用精诺真小动物光学成像仪在裸鼠肝癌模型中观测间充质干细胞向肿瘤的趋化作用。结果:在鼠尾静脉注射标记MSCs细胞后21天荧光成像可见MSCs主要积聚于肿瘤病灶处及肝脏。生物发光成像后可监测到病灶处由luciferase标记肿瘤细胞(Hep G2)发出荧光;将荧光成像与生物发光成像所得图像经后处理融合后,可见证间充质干细胞像肿瘤病灶定向迁徙的生物过程。经肿瘤病理切片证实间充质干细胞成功迁徙至肿瘤病灶中。结论:应用间充质干细胞双标记光学成像系统实现MSCs在活体内对肿瘤的趋化过程进行观测是可行的。这种成像方法可作为下一步以MSCs为载体的肿瘤基因治疗的有效监测手段。  相似文献   

17.
The ability to process damaged DNA may vary between cells depending on their differentiated status. However, there is little in vivo data available and it is not intuitively obvious how the activity of specific repair pathways may vary between different subpopulations (e.g. stem cells and proliferative, committed and differentiated cells) of a particular tissue. To obtain such information for the intestinal epithelium, we have developed an assay that detects differences in the way different regions of the crypt (stem, proliferative and maturation zones) respond to DNA damage. The assay is a variant of the ''comet'' assay, which detects DNA strand breaks by measuring the proportion of DNA migrating from individual cells, or in this case intact isolated crypts, in an electrophoretic field. The method is quantitative, with the amount of migrating DNA being proportional to the number of strand breaks. Isolated crypts are repair competent and spatial differences are apparent with some agents. The assay has the potential to characterize the repair properties of cells at different stages of differentiation within the crypt, determine the characteristics that might predispose them to damage and may help in understanding the route of stem cell mutation.  相似文献   

18.
Experiments were conducted on CBA mice and albino rats. A study was made of the effect of erythrocyte destruction products (EDP) on the content of hemopoietic colony-forming units (CFU), differentiation of stem cells and the erythropoietin production. It was shown that 3 or 4 EDP injections to normal mice or to lethally irradiated (1000 rad) mice after the transplantation of bone marrow cells caused no changes in the CFU level of stem cells differentiation. In case of a daily (for 3 days) administration of EDP to mice before the irradiation (1000 rad) and bone marrow transplantation there was observed an increase of the colonies count in the recipients' spleen on account of the erythroid colonies. EDP injection caused no changes in the erythropoietic activity of the blood serum. A possible role of erythrocyte destruction products in the mechanism of erythropoiesis autoregulation is discussed.  相似文献   

19.
The hypothesis of repression of multipotent stem cells (CFU) by leukemic cells to explain their depletion, previously demonstrated in AKR leukemic mice, was tested. Using arabinosylcytosine to destroy leukemic cells, it was shown that the bone marrow CFU pool was acutely depressed between 2 h and 12 h after treatment. However, 5 to 7 days later, this pool was restored, surpassing the value of the bone marrow pool in normal mice. This seems to indicate that the CFU pool in leukemic mice is potentially capable of proliferating but is repressed by leukemic cells.  相似文献   

20.
Summary The number and type of stem cells in spleen and bone marrow of mice were determined after exposure to a single dose of 150 R on day 6, to a single dose of 500 R on day 6 or day 9 or to a fractionated dose of 150 R + 350 R on day 6 and 9. The stem cells were assayed on the basis of colony forming units (CFU) in spleen and of incorporation of iododeoxyuridine in spleen and bone marrow of lethally irradiated host mice. During the first month of life, the number of stem cells in non-irradiated mice increases markedly in bone marrow and slightly in spleen. Irradiation causes a long-lasting depression in stem cells, particularly in bone marrow and affecting preferentially erythropoietic precursor cells. Following a dose of only 150 R, the number of CFU in bone marrow is still below control levels 24 days later. An exposure to 500 R fractionated between day 6 and 9 has a markedly greater effect on stem cells in the spleen than the same dose given in a single application either at day 6 or 9.Supported by the Schutzkommission am Ministerium des Innern der BRD and contract B232-76-1BIOB of the Biology Division of the Commission of the European Community (Publikation No. 1727)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号