首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The coloned 5-HT1A receptor, stably expressed in HeLa cells, has been shown to mediate the effects of 5-hydroxytryptamine (5-HT) to inhibit cAMP formation and to stimulate the hydrolysis of phosphatidylinositol. Both responses were found to be pertussis toxin sensitive. We have examined these two responses in membranes derived from these cells and show that the 5-HT1A receptor can directly regulate the activity of adenylyl cyclase and phospholipase C in response to agonist. In order to examine whether the same or distinct guanine nucleotide-binding regulatory protein(s) (G protein) are involved in these two signal transduction pathways, we used anti-peptide antibodies recognizing the -subunits of Gi1, Gi2, Gi3 as specific tools, since these pertussis toxin substrates are expressed in HeLa cells. These antibodies have previously been shown to prevent receptor-G protein coupling by binding to the regions of G proteins which are putatively involved in interaction with receptors. Our results indicate that the Gi proteins, but preferentially G3, mediate the effects of 5-HT both to inhibit adenylyl cyclase and to stimulate phospholipase C. These findings demonstrate that the same receptor interacting with the same C protein can regulate several distinct effector molecules.  相似文献   

2.
3.
4.
Using a universal signaling assay employing G-protein chimeras comprising the C-terminal five amino acids of Gi1/2, Gi3, Go, and Gz fused to Gq, the calcium mobilizing G-protein, we explored the role of the C-terminus of Gi family G-proteins as a determinant for 5-HT(1A) receptor functional coupling. Co-expression of the 5-HT(1A) receptor with each of the Gq/Gi family chimeras resulted in a concentration-dependent increase in calcium upon addition of 5-HT, although the coupling efficiency differed dramatically. Gq/Gi3 resulted in the most efficient coupling based on both potency and relative maximum response to 5-HT. Gq/Go also produced efficient coupling in terms of relative 5-HT efficacy (76% of the Gq/Gi3 maximum response), although 5-HT exhibited 4-fold lower agonist potency, and Gq/Gz and Gq/Gi1/2 conferred poor functional coupling. Agonist potencies and relative efficacies determined for a number of 5-HT(1A) receptor agonists using Gq/Gi3 coupling were significantly weaker than those described previously for coupling through the native G-protein. These results indicate the C-terminus of Gi3 as an important determinant for coupling to the 5-HT(1A) receptor, while the reduced functional agonist activities suggest additional motifs participate in receptor/G-protein coupling.  相似文献   

5.
Although several serotonin (5-HT) receptor subtypes influence ethanol consumption, the motivational mechanisms underlying these changes remain unclear. The present experiments characterized the rewarding, aversive and stimulant effects of ethanol in combination with a specific 5-HT1A receptor antagonist (pindobind-5HT1A). In a place conditioning study, adult male Swiss-Webster mice received 6 parings of a distinctive tactile stimulus with either 2 g/kg ethanol, 2.5 mg/kg pindobind-5HT1A, or both drugs in combination. Ethanol-conditioned preference for the tactile cue was enhanced in mice also receiving pindobind-5HT1A, which did not produce cue preference in the absence of ethanol. In a taste conditioning study, Swiss-Webster mice received 4 trials consisting of access to a distinctive NaCl flavor followed by either 4 g/kg ethanol, 2.5 mg/kg pindobind-5HT1A, or both drugs. As expected, ethanol produced avoidance of the flavor. Pindobind-5HT1A did not reduce or enhance ethanol-conditioned flavor aversion. In a study characterizing locomotor activity, 2 g/kg ethanol produced stimulation, which was enhanced after 10 daily treatments. Locomotor sensitization was not altered by co-treatment with pindobind-5HT1A. Overall, the present results show specific effects of 5-HT1A blockade on ethanol reward.  相似文献   

6.
In the present study we analyze the oligomerization of the 5-HT1A receptor within living cells at the sub-cellular level. Using a 2-excitation Förster Resonance Energy Transfer (FRET) method combined with spectral microscopy we are able to estimate the efficiency of energy transfer based on donor quenching as well as acceptor sensitization between CFP-and YFP-tagged 5-HT1A receptors at the plasma membrane. Through the analysis of the level of apparent FRET efficiency over the various relative amounts of donor and acceptor, as well as over a range of total surface expressions of the receptor, we verify the specific interaction of these receptors. Furthermore we study the role of acylation in this interaction through measurements of a palmitoylation-deficient 5-HT1A receptor mutant. Palmitoylation increases the tendency of a receptor to localize in lipid rich microdomains of the plasma membrane. This increases the effective surface density of the receptor and provides for a higher level of stochastic interaction.  相似文献   

7.
We report the cloning and the deduced amino acid sequence of cDNAs encoding both the human serotonin 5-HT2 and 5-HT1C receptors. The human 5-HT2 and 5-HT1C receptors shared 87% and 90% amino acid homology, respectively, with their rat counterparts. The most divergent regions of the 5-HT2 receptor between human and rat were the N-terminal extracellular domain (75% homology) and the C-terminal intracellular domain (67% homology between amino acids 426-474). The greatest variability between the human and rat 5-HT1C receptors were at the N-terminal extracellular domain (78% homology) and the third cytoplasmic loop (71% homology). The availability of the cloned human 5-HT2 and 5-HT1C receptors will help facilitate the further understanding of the molecular pharmacology and physiology of these receptors.  相似文献   

8.
5-HT1A receptors are involved in the regulation of various behaviors and the mechanism of action of anxiolytics and antidepressants. It is rather difficult to study the expression of the 5-HT1A receptor gene in the brain because of the low concentration of its mRNA. A method developed for quantitating the level of 5-HT1A receptor gene expression in brain structures involves estimation of the copy number for contaminant genomic DNA, the cDNA of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene (a housekeeping gene), and the 5-HT1A receptor gene cDNA in a cDNA preparation. To estimate the GAPDH and 5-HT1A receptor cDNA copy numbers, the fluorescent intensity of the corresponding PCR products is calibrated using genomic DNA standards of known concentrations. The expression of the 5-HT1A receptor gene is corrected for the content of contaminant genomic DNA and presented as a 5-HT1A receptor cDNA copy number per 100 copies of the GAPDH cDNA. The method was used to demonstrate for the first time that expression of the 5-HT1A receptor gene is increased in the frontal cortex and the amygdala of mice knocked-out in the monoamine oxidase A gene.  相似文献   

9.
The serotonin 5-HT1D receptor: A progress review   总被引:4,自引:0,他引:4  
Most of the known neurotransmitters interact with more than one type of receptor. Some of them even dispose of receptor subtypes to exert their actions. Serotonin, far from being an exception to that, possesses at least 3 classes of receptors, which have all been reported to be heterogeneous, although convincing data only exist for the 5-HT1 class. This name has been proposed in 1979, two years before the introduction of A and B in the nomenclature to account for the observed heterogeneity of these cites. The 5-HT1C receptor subtype was first described in 1984 and the last member of the family, named 5-HT1D, was characterized in 1987. The pharmacological profiles, the signal transducing systems and the anatomical localizations, both at the regional and cellular levels, of all these subtypes have been investigated and possible functions have been proposed for each of them. Moreover, last and most definitive demonstration of the subtype individuality, the gene or complementary DNA coding for the 5-HT1A and 5-HT1C (and 5-HT2) receptors have been cloned and sequenced. Such data are still missing for 5-HT1D (and 5-HT1B) receptors, but will certainly be provided in the next few years. However and waiting for this decisive clue, the characterization of the 5-HT1D subtype leaves no doubt concerning its significance as a functional 5-HT receptor. This review will concentrate on the characteristics of this subtype of 5-HT receptor.Abbreviations 5-CT 5-carboxamidotryptamine - 5-MeOT 5-methoxy-tryptamine - 5-MeODMT N,N-dimethyl-5-methoxytryptamine - 8-OH-DPAT 8-hydroxy-2[di-n-propylamino]tetralin - CYP cyanopindolol - DHE dihydroergotamine - DOI 2,5-dimethoxy-4-iodophenylisopropylamine - DP-5-CT N,N-dipropyl 5-carboxamidotryptamine - ICPY 2-iodo-cyanopindolol - mCPP m-chloro-phenyl-piperazine - TFMPP m-trifluoro-methyl-phenyl-piperazine - EMAX Maximal effect - EC50 Half maximal effective concentration - KD Dissociation constant - KB Antagonist dissociation constant  相似文献   

10.
Indoloxypropanolamine analogues as 5-HT(1A) receptor antagonists   总被引:1,自引:0,他引:1  
Analogues of pindolol, 1-(1H-indol-4-yloxy)-3-isopropylamino-propan-2-ol, were synthesized and evaluated as 5-HT(1A) receptor antagonists. The structural features required for optimal binding to the 5-HT1A receptor are as follows: S-2-propanol linker, 4-indoloxy substituent, and a large lipophilic cyclic amine substituent.  相似文献   

11.
We examined the effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and 5-HT(2A/2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) on performance on the fixed-interval peak procedure, and the sensitivity of these effects to 5-HT1A and 5-HT2A receptor antagonists (N-[2-(4-[2-methoxyphenyl]-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide [WAY-100635] and ketanserin). Rats were trained to press a lever for food reinforcement in 50 min sessions consisting of 32 trials in which the lever was continuously available, separated by 10 s inter-trial intervals. In 16 trials, reinforcement was delivered following the first response after 30 s had elapsed since trial onset (fixed-interval 30 s). In 16 randomly interposed (peak/probe) trials, reinforcement was omitted, and the lever remained in the operant chamber for 120 s. Response rate in probe trials was plotted against time from trial onset. Time to peak response rate (t(peak)) and the Weber fraction were derived from modified Gaussian curves fitted to each rat's data. 8-OH-DPAT (0.05 mg kg(-1)) reduced t(peak) and increased the Weber fraction; the effect on t(peak) was antagonized by WAY-100635 (0.1 mg kg(-1)). DOI (0.25 mg kg(-1)) also reduced t(peak) and increased the Weber fraction; the reduction of t(peak) was antagonized by ketanserin (2 mg kg(-1)). Stimulation of 5-HT1A and 5-HT2A receptors alters temporal differentiation in qualitatively similar ways.  相似文献   

12.
13.
Brain serotonin (5-HT) system has been implicated in pathophysiology of anxiety, depression, drug addiction, and schizophrenia. 5-HT2A receptor is involved in the mechanisms of stress-induced psychopathology and impulsive behavior. Here, we investigated the role of 5-HT2A receptor in the autoregulation of the brain 5-HT system. The chronic treatment with agonist of 5-HT2A receptor DOI (1.0 mg/kg, i.p./14 days) produced considerable decrease of 5-HT2A receptor-mediated "head-twitches" in AKR/J mice indicating desensitization of 5-HT2A receptors. Chronic DOI treatment failed to alter 5-HT2A receptor gene expression in the midbrain, hippocampus and frontal cortex. At the same time, the increase in the expression of the gene encoding key enzyme of 5-HT synthesis, tryptophan hydroxylase 2 (TPH2), the increase in TPH2 activity and 5-HT levels and decreased expression of serotonin transporter (5-HTT) gene was found in the midbrain of DOI-treated mice. The results provide new evidence of receptor-gene cross-talk in the brain 5-HT system and the implication of 5-HT2A receptor in the autoregulation of the brain 5-HT system.  相似文献   

14.
Starting from compounds previously identified as α1-adrenoceptor antagonists that were also found to bind to the 5-HT1A receptor, in an attempt to separate the two activities, a new series of 5-HT1A receptor agonists was identified and shown to have high potency and/or high selectivity. Of these, compound 13, which combines high selectivity (5-HT1A1 = 151) and good agonist potency (pD2 = 7.82; Emax = 76), was found to be the most interesting.  相似文献   

15.
Progress in the field of neuronal receptor research has accelerated during the last few years due to developments in pharmacology and molecular biology. This is particularly true in the case of the serotonin 5-HT1A receptor. In 1983 the very selective, high affinity 5-HT1A agonist 8-OH-DPAT was developed which allowed the pharmacology and distribution of the 5-HT1A receptor in the central nervous system of the rat and man to be extensively characterized. By 1987, the gene encoding this receptor protein was cloned and sequenced, allowing not only elucidation of its structure, but also better insight into the nature of its coupling to transmembrane signal transduction systems. Thus in a short period of time considerable knowledge has accumulated on how serotonin exerts its functions in the central nervous system via the 5-HT1A receptor. In the present review we will briefly discuss some of the latest developments regarding the 5-HT1A receptor.  相似文献   

16.
The present study characterizes a serotonin (5-HT) binding site on human platelet membranes, using [3H]8-OH-DPAT as the radioligand. [3H]8-OH-DPAT binds specifically and saturably to a site on human platelet membranes with an average KD of 43 nM and Bmax of 1078 fmol/mg protein. Determinations of IC50 values for various serotonergic characterizing agents in platelets for displacement of [3H]8-OH-DPAT were performed. For example, 8-OH-DPAT 5HT1A had an IC50 of 117 nM; TFMPP 5HT1B (2.3 microM0 and PAPP 1A + 5HT2 (9 microM); ipsapirone 5HT1A (21.1 microM) and buspirone 5HT1A (greater than 100 microM); ketanserin 5HT2 (greater than 100 microM); 5-HT uptake inhibitors: paroxetine (13 nM); chlorimipramine (73 nM) and fluoxetine (653 nM). The pharmacological inhibitory profile of the platelet 8-OH-DPAT site is not consistent with profiles reported for brain. 8-OH-DPAT does not inhibit [3H]imipramine binding, however, it does inhibit [3H]5-HT uptake in human platelets near 5-HT's Km value (IC50 = 2-4 microM). These results suggest that the human platelet site labeled by [3H]8-OH-DPAT is pharmacologically different from the neuronal site and probably is a component of the 5-HT transporter.  相似文献   

17.
18.
To study the early effects of neonatal 5,7-dihydroxytryptamine lesions on 5-hydroxytryptamine1A (5-HT1A) receptors, we measured regional [3H]8-OH-DPAT-labeled 5-HT1A sites in binding assays and compared them to our previous studies of [3H]paroxetine-labeled 5-HT transporter sites during the first month in the same rats. While there were significant time- and dose-dependent effects of 5,7-DHT on 5-HT transporter sites, there were no significant changes in 5-HT1A sites in cortex, hippocampus, diencephalon, brainstem, cerebellum, or spinal cord. 5,7-DHT lesions also did not alter the Ki of Gpp(NH)p at brainstem 5-HT1A sites or the Ki of 5-HT in cortex or brainstem in the presence or absence of GTPS or Gpp(NH)p. There were significant regional differences between the density of 5-HT1A sites and 5-HT transporter sites. The ontogeny of brainstem 5-HT1A sites was a pattern of increases until three weeks postnatal, and 5,7-DHT lesions did not alter the ontogeny of 5-HT1A sites. These data suggest differential plasticity of 5-HT1A and 5-HT transporter binding sites during the first month after neonatal 5,7-DHT lesions.  相似文献   

19.
The mechanisms involved in the neuroprotective effect of serotonin 5-HT1A receptor agonists on brain damage induced by ischemia remain to be fully elucidated. Given that serotonergic drugs may regulate N-methyl-D-aspartate (NMDA) receptor function, which is implicated in events leading to ischemia-induced neuronal cell death, this study sought to determine the effects of the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the levels of NMDA receptor NR1 subunit in gerbil hippocampus after transient global cerebral ischemia. Pretreatment with 8-OH-DPAT (1 mg/kg) prevented the neuronal loss in CA1 subfield 72 h after ischemia. NMDA receptor NR1 levels in whole hippocampus were not affected 24 h after ischemia, but the levels of the subunit phosphorylated at the protein kinase A (PKA) site, pNR1(Ser897), were significantly increased, and this increase was prevented by the same 8-OH-DPAT dose, a probable consequence of the increased phosphatase 1 (PP1) enzyme activity found in ischemic gerbils pretreated with the 5-HT1A receptor agonist. The results suggest that NR1 subunit phosphorylation plays a role in the neuroprotective effect of 8-OH-DPAT on cell damage induced by global cerebral ischemia in the gerbil hippocampus and support the potential interest of 5-HT1A receptor activation in the search for neuroprotective strategies.  相似文献   

20.
New cis-, trans-2-butene and 1,2-bismethylbenzene analogues of MM77 and NAN-190 (1-[4-[4-(2-methoxyphenyl)-piperazin-1-yl]-butyl]-pyrrolidine-2,5-dione and isoindole-1,3-dione, respectively) were synthesized. The differences in their in vitro affinity for serotonin 5-HT(7) and 5-HT(1A) receptors were explained using a conformational analysis. A bioactive conformation of those compounds for the 5-HT(7) receptor, different from that established for 5-HT(1A), was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号