首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA methylation plays important roles via regulation of numerous cellular mechanisms in diverse organisms, including humans. The paradigm bacterial methyltransferase (MTase) HhaI (M.HhaI) catalyzes the transfer of a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) onto the target cytosine in DNA, yielding 5-methylcytosine and S-adenosyl-L-homocysteine (AdoHcy). The turnover rate (k cat) of M.HhaI, and the other two cytosine-5 MTases examined, is limited by a step subsequent to methyl transfer; however, no such step has so far been identified. To elucidate the role of cofactor interactions during catalysis, eight mutants of Trp41, which is located in the cofactor binding pocket, were constructed and characterized. The mutants show full proficiency in DNA binding and base-flipping, and little variation is observed in the apparent methyl transfer rate k chem as determined by rapid-quench experiments using immobilized fluorescent-labeled DNA. However, the Trp41 replacements with short side chains substantially perturb cofactor binding (100-fold higher K(AdoMet)D and K(AdoMet)M) leading to a faster turnover of the enzyme (10-fold higher k cat). Our analysis indicates that the rate-limiting breakdown of a long-lived ternary product complex is initiated by the dissociation of AdoHcy or the opening of the catalytic loop in the enzyme.  相似文献   

2.
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI.  相似文献   

3.
We have determined a structure for a complex formed between HhaI methyltransferase (M.HhaI) and S-adenosyl-L-methionine (AdoMet) in the presence of a non-specific short oligonucleotide. M.HhaI binds to the non-specific short oligonucleotides in solution. Although no DNA is incorporated in the crystal, AdoMet binds in a primed orientation, identical with that observed in the ternary complex of the enzyme, cognate DNA, and AdoMet or S-adenosyl-L-homocysteine (AdoHcy). This orientation differs from the previously observed unprimed orientation in the M.HhaI-AdoMet binary complex, where the S+-CH3 unit of AdoMet is protected by a favorable cation-pi interaction with Trp41. The structure suggests that the presence of DNA can guide AdoMet into the primed orientation. These results shed new light on the proposed ordered mechanism of binding and explains the stable association between AdoMet and M.HhaI.  相似文献   

4.
The crystal structure of the Escherichia coli DNA adenine methyltransferase (EcoDam) in a binary complex with the cofactor product S-adenosyl-L-homocysteine (AdoHcy) unexpectedly showed the bound AdoHcy in two alternative conformations, extended or folded. The extended conformation represents the catalytically competent conformation, identical to that of EcoDam-DNA-AdoHcy ternary complex. The folded conformation prevents catalysis, because the homocysteine moiety occupies the target Ade binding pocket. The largest difference between the binary and ternary structures is in the conformation of the N-terminal hexapeptide ((9)KWAGGK(14)). Cofactor binding leads to a strong change in the fluorescence of Trp(10), whose indole ring approaches the cofactor by 3.3A(.) Stopped-flow kinetics and AdoMet cross-linking studies indicate that the cofactor prefers binding to the enzyme after preincubation with DNA. In the presence of DNA, AdoMet binding is approximately 2-fold stronger than AdoHcy binding. In the binary complex the side chain of Lys(14) is disordered, whereas Lys(14) stabilizes the active site in the ternary complex. Fluorescence stopped-flow experiments indicate that Lys(14) is important for EcoDam binding of the extrahelical target base into the active site pocket. This suggests that the hexapeptide couples specific DNA binding (Lys(9)), AdoMet binding (Trp(10)), and insertion of the flipped target base into the active site pocket (Lys(14)).  相似文献   

5.
The presence of 5-azacytosine (ZCyt) residues in DNA leads to potent inhibition of DNA (cytosine-C5) methyltranferases (C5-MTases) in vivo and in vitro. Enzymatic methylation of cytosine in mammalian DNA is an epigenetic modification that can alter gene activity and chromosomal stability, influencing both differentiation and tumorigenesis. Thus, it is important to understand the critical mechanistic determinants of ZCyt's inhibitory action. Although several DNA C5-MTases have been reported to undergo essentially irreversible binding to ZCyt in DNA, there is little agreement as to the role of AdoMet and/or methyl transfer in stabilizing enzyme interactions with ZCyt. Our results demonstrate that formation of stable complexes between HhaI methyltransferase (M.HhaI) and oligodeoxyribonucleotides containing ZCyt at the target position for methylation (ZCyt-ODNs) occurs in both the absence and presence of co-factors, AdoMet and AdoHcy. Both binary and ternary complexes survive SDS-PAGE under reducing conditions and take on a compact conformation that increases their electrophoretic mobility in comparison to free M.HhaI. Since methyl transfer can occur only in the presence of AdoMet, these results suggest (1) that the inhibitory capacity of ZCyt in DNA is based on its ability to induce a stable, tightly closed conformation of M.HhaI that prevents DNA and co-factor release and (2) that methylation of ZCyt in DNA is not required for inhibition of M.HhaI.  相似文献   

6.
HhaI DNA methyltransferase belongs to the C5-cytosine methyltransferase family, which is characterized by the presence of a set of highly conserved amino acids and motifs present in an invariant order. HhaI DNA methyltransferase has been subjected to a lot of biochemical and crystallographic studies. A number of issues, especially the role of the conserved amino acids in the methyltransferase activity, have not been addressed. Using sequence comparison and structural data, a structure-guided mutagenesis approach was undertaken, to assess the role of conserved amino acids in catalysis. Site-directed mutagenesis was performed on amino acids involved in cofactor S-adenosyl-L-methionine (AdoMet) binding (Phe18, Trp41, Asp60 and Leu100). Characterization of these mutants, by in vitro /in vivo restriction assays and DNA/AdoMet binding studies, indicated that most of the residues present in the AdoMet-binding pocket were not absolutely essential. This study implies plasticity in the recognition of cofactor by HhaI DNA methyltransferase.  相似文献   

7.
S-adenosyl-L-methionine- (AdoMet-) dependent methyltransferases are widespread, play critical roles in diverse biological pathways, and are antibiotic and cancer drug targets. Presently missing from our understanding of any AdoMet-dependent methyl-transfer reaction is a high-resolution structure of a precatalytic enzyme/AdoMet/DNA complex. The catalytic mechanism of DNA cytosine methylation was studied by structurally and functionally characterizing several active site mutants of the bacterial enzyme M.HhaI. The 2.64 A resolution protein/DNA/AdoMet structure of the inactive C81A M.HhaI mutant suggests that active site water, an approximately 13 degree tilt of the target base toward the active site nucleophile, and the presence or absence of the cofactor methylsulfonium are coupled via a hydrogen-bonding network involving Tyr167. The active site in the mutant complex is assembled to optimally align the pyrimidine for nucleophilic attack and subsequent methyl transfer, consistent with previous molecular dynamics ab initio and quantum mechanics/molecular mechanics calculations. The mutant/DNA/AdoHcy structure (2.88 A resolution) provides a direct comparison to the postcatalytic complex. A third C81A ternary structure (2.22 A resolution) reveals hydrolysis of AdoMet to adenosine in the active site, further validating the coupling between the methionine portion of AdoMet and ultimately validating the structural observation of a prechemistry/postchemistry water network. Disruption of this hydrogen-bonding network by a Tyr167 to Phe167 mutation does not alter the kinetics of nucleophilic attack or methyl transfer. However, the Y167F mutant shows detectable changes in kcat, caused by the perturbed kinetics of AdoHcy release. These results provide a basis for including an extensive hydrogen-bonding network in controlling the rate-limiting product release steps during cytosine methylation.  相似文献   

8.
Kinetic and catalytic mechanism of HhaI methyltransferase   总被引:53,自引:0,他引:53  
Kinetic and catalytic properties of the DNA (cytosine-5)-methyltransferase HhaI are described. With poly(dG-dC) as substrate, the reaction proceeds by an equilibrium (or processive) ordered Bi-Bi mechanism in which DNA binds to the enzyme first, followed by S-adenosylmethionine (AdoMet). After methyl transfer, S-adenosylhomocysteine (AdoHcy) dissociates followed by methylated DNA. AdoHcy is a potent competitive inhibitor with respect to AdoMet (Ki = 2.0 microM) and its generation during reactions results in non-linear kinetics. AdoMet and AdoHcy significantly interact with only the substrate enzyme-DNA complex; they do not bind to free enzyme and bind poorly to the methylated enzyme-DNA complex. In the absence of AdoMet, HhaI methylase catalyzes exchange of the 5-H of substrate cytosines for protons of water at about 7-fold the rate of methylation. The 5-H exchange reaction is inhibited by AdoMet or AdoHcy. In the enzyme-DNA-AdoHcy complex, AdoHcy also suppresses dissociation of DNA and reassociation of the enzyme with other substrate sequences. Our studies reveal that the catalytic mechanism of DNA (cytosine-5)-methyltransferases involves attack of the C6 of substrate cytosines by an enzyme nucleophile and formation of a transient covalent adduct. Based on precedents of other enzymes which catalyze similar reactions and the susceptibility of HhaI to inactivation by N-ethylmaleimide, we propose that the sulfhydryl group of a cysteine residue is the nucleophilic catalyst. Furthermore, we propose that Cys-81 is the active-site catalyst in HhaI. This residue is found in a Pro-Cys doublet which is conserved in all DNA (cytosine-5)-methyltransferases whose sequences have been determined to date and is found in related enzymes. Finally, we discuss the possibility that covalent adducts between C6 of pyrimidines and nucleophiles of proteins may be important general components of protein-nucleic acid interactions.  相似文献   

9.
We carried out a steady state kinetic analysis of the bacteriophage T4 DNA-[N6-adenine]methyltransferase (T4 Dam) mediated methyl group transfer reaction from S-adenosyl-l-methionine (AdoMet) to Ade in the palindromic recognition sequence, GATC, of a 20-mer oligonucleotide duplex. Product inhibition patterns were consistent with a steady state-ordered bi-bi mechanism in which the order of substrate binding and product (methylated DNA, DNA(Me) and S-adenosyl-l-homocysteine, AdoHcy) release was AdoMet downward arrow DNA downward arrow DNA(Me) upward arrow AdoHcy upward arrow. A strong reduction in the rate of methylation was observed at high concentrations of the substrate 20-mer DNA duplex. In contrast, increasing substrate AdoMet concentration led to stimulation in the reaction rate with no evidence of saturation. We propose the following model. Free T4 Dam (initially in conformational form E) randomly interacts with substrates AdoMet and DNA to form a ternary T4 Dam-AdoMet-DNA complex in which T4 Dam has isomerized to conformational state F, which is specifically adapted for catalysis. After the chemical step of methyl group transfer from AdoMet to DNA, product DNA(Me) dissociates relatively rapidly (k(off) = 1.7 x s(-1)) from the complex. In contrast, dissociation of product AdoHcy proceeds relatively slowly (k(off) = 0.018 x s(-1)), indicating that its release is the rate-limiting step, consistent with kcat = 0.015 x s(-1). After AdoHcy release, the enzyme remains in the F conformational form and is able to preferentially bind AdoMet (unlike form E, which randomly binds AdoMet and DNA), and the AdoMet-F binary complex then binds DNA to start another methylation cycle. We also propose an alternative pathway in which the release of AdoHcy is coordinated with the binding of AdoMet in a single concerted event, while T4 Dam remains in the isomerized form F. The resulting AdoMet-F binary complex then binds DNA, and another methylation reaction ensues. This route is preferred at high AdoMet concentrations.  相似文献   

10.
DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA.  相似文献   

11.
Kinetic mechanism of the EcoRI DNA methyltransferase   总被引:4,自引:0,他引:4  
N O Reich  N Mashhoon 《Biochemistry》1991,30(11):2933-2939
We present a kinetic analysis of the EcoRI DNA N6-adenosine methyltransferase (Mtase). The enzyme catalyzes the S-adenosylmethionine (AdoMet)-dependent methylation of a short, synthetic 14 base pair DNA substrate and plasmid pBR322 DNA substrate with kcat/Km values of 0.51 X 10(8) and 4.1 X 10(8) s-1 M-1, respectively. The Mtase is thus one of the most efficient biocatalysts known. Our data are consistent with an ordered bi-bi steady-state mechanism in which AdoMet binds first, followed by DNA addition. One of the reaction products, S-adenosylhomocysteine (AdoHcy), is an uncompetitive inhibitor with respect to DNA and a competitive inhibitor with respect to AdoMet. Thus, initial DNA binding followed by AdoHcy binding leads to formation of a ternary dead-end complex (Mtase-DNA-AdoHcy). We suggest that the product inhibition patterns and apparent order of substrate binding can be reconciled by a mechanism in which the Mtase binds AdoMet and noncanonical DNA randomly but that recognition of the canonical site requires AdoMet to be bound. Pre-steady-state and isotope partition analyses starting with the binary Mtase-AdoMet complex confirm its catalytic competence. Moreover, the methyl transfer step is at least 10 times faster than catalytic turnover.  相似文献   

12.
4'-Thio-2'-deoxycytidine was synthesized as a 5'- protected phosphoramidite compatible with solid phase DNA synthesis. When incorporated as the target cytosine (C*) in the GC*GC recognition sequence for the DNA methyltransferase M. HhaI, methyl transfer was strongly inhibited. In contrast, these same oligonucleotides were normal substrates for the cognate restriction endonuclease R. HhaI and its isoschizomer R. Hin P1I. M. HhaI was able to bind both 4'-thio-modified DNA and unmodified DNA to equivalent extents under equilibrium conditions. However, the presence of 4'-thio-2'-deoxycytidine decreased the half-life of the complex by >10-fold. The crystal structure of a ternary complex of M. HhaI, AdoMet and DNA containing 4'-thio-2'-deoxycytidine was solved at 2.05 A resolution with a crystallographic R-factor of 0.186 and R-free of 0.231. The structure is not grossly different from previously solved ternary complexes containing M. HhaI, DNA and AdoHcy. The difference electron density suggests partial methylation at C5 of the flipped target 4'-thio-2'-deoxycytidine. The inhibitory effect of the 4'sulfur atom on enzymatic activity may be traced to perturbation of a step in the methylation reaction after DNA binding but prior to methyl transfer. This inhibitory effect can be partially overcome after a considerably long time in the crystal environment where the packing prevents complex dissociation and the target is accurately positioned within the active site.  相似文献   

13.
Prokaryotic DNA methyltransferase M.SssI recognizes and methylates C5 position of the cytosine residue within the CG dinucleotides in DNA. It is an excellent model for studying the mechanism of interaction between CG-specific eukaryotic methyltransferases and DNA. We have built a structural model of M.SssI in complex with the substrate DNA and its analogues as well as the cofactor analogue S-adenosyl-L-homocysteine (AdoHcy) using the previously solved structures of M.HhaI and M.HaeIII as templates. The model was constructed according to the recently developed "FRankenstein's monster" approach. Based on the model, amino acid residues taking part in cofactor binding, target recognition and catalysis were predicted. We also modeled covalent modification of the DNA substrate and studied its influence on protein-DNA interactions.  相似文献   

14.
Abstract

Prokaryotic DNA methyltransferase M. SssI recognizes and methylates C5 position of the cytosine residue within the CG dinucleotides in DNA. It is an excellent model for studying the mechanism of interaction between CG-specific eukaryotic methyltransferases and DNA. We have built a structural model of M.SssI in complex with the substrate DNA and its analogues as well as the cofactor analogue S-adenosyl-L-homocysteine (AdoHcy) using the previously solved structures of M.HhaI and M.HaeIII as templates. The model was constructed according to the recently developed “FRankenstein's monster” approach. Based on the model, amino acid residues taking part in cofactor binding, target recognition and catalysis were predicted. We also modeled covalent modification of the DNA substrate and studied its influence on protein-DNA interactions.  相似文献   

15.
Enzymes that modify DNA are faced with significant challenges in specificity for both substrate binding and catalysis. We describe how single hydrogen bonds between M.HhaI, a DNA cytosine methyltransferase, and its DNA substrate regulate the positioning of a peptide loop which is ∼28 Å away. Stopped-flow fluorescence measurements of a tryptophan inserted into the loop provide real-time observations of conformational rearrangements. These long-range interactions that correlate with substrate binding and critically, enzyme turnover, will have broad application to enzyme specificity and drug design for this medically relevant class of enzymes.Sequence-specific modification of DNA is essential for nearly all forms of life and contributes to a myriad of biological processes including gene regulation, mismatch repair, host defense, DNA replication, and genetic imprinting. Methylation of cytosine and adenine bases is a key epigenetic process whereby phenotypic changes are inherited without altering the DNA sequence (1). The central role of the bacterial and mammalian S-adenosylmethionine (AdoMet)2-dependent DNA methyltransferases in virulence regulation and tumorigenesis, respectively, have led these enzymes to be validated targets for antibiotic and cancer therapies (2, 3). However, AdoMet-dependent enzymes catalyze diverse reactions, and the design of potent and selective DNA methyltransferase inhibitors is particularly challenging (4, 5). The design of drugs that bind outside the active site is a particularly attractive means of inhibition for enzymes with common cofactors like AdoMet because off-target inhibition often leads to toxicity (6). Unfortunately, robust methods to identify and characterize such critical binding sites distal from the active site have not been developed.DNA methyltransferases bind to a particular DNA sequence, stabilize the target base into an extrahelical position within the enzyme active site, and transfer the methyl moiety from AdoMet to the DNA (7). During this process, dramatic changes in the DNA structure such as bending, base flipping, or the intercalation of residues into the recognition sequence are often accompanied by large scale protein rearrangements (8). Here we characterized a specific conformational rearrangement of M.HhaI, a model DNA cytosine C5 methyltransferase with a cognate recognition sequence of 5′-GCGC-3′. Many structures of M.HhaI are available at high resolution including an ensemble of complexes with either cognate or nonspecific DNA (9, 10). Reorganization of an essential catalytic loop (residues 80–100) is regulated by sequence-specific protein-DNA interactions that occur ∼28 Å away from the catalytic loop (Fig. 1). Our work quantifies the importance of such distal communication in sequence-specific DNA modification and provides plausible structural mechanisms.Open in a separate windowFIGURE 1.Loop interactions in M.HhaI. A, two superimposed structures of M.HhaI are shown with the catalytic loop highlighted. Enzymes are in blue (open conformer) and red (closed conformer) with the cofactor in orange, the flipped cytosine in green, and position 1 of the DNA recognition sequence colored by atom along with Cys-81, Ile-86, and Arg-240. The large blue arrow shows the long-range structural communication between Arg-240 and the catalytic loop. B, close-up of the interactions between Arg-240, Ile-86, and position 1 of the recognition sequence. The flipped cytosine is in green. Removal of N2 from the guanosine with an inosine base maintains near cognate loop motion while removal of O6 with a 2AP base has almost no loop motion.DNA-dependent positioning of the catalytic loop in M.HhaI was first observed crystallographically; cognate DNA stabilizes the loop-closed conformer, while nonspecific DNA leaves the loop in the open conformer (9, 10). Correct positioning of this loop is essential for catalysis because C81, the active site nucleophile that attacks the target cytosine base at the C6 position (supplemental Fig. S1), is ∼9.6 Å away in the loop-open conformer (Fig. 1A). Populating the closed conformer of the loop is essential for tight DNA binding and stabilizing the target cytosine that is flipped out of the DNA duplex (1113). Using stopped-flow fluorescence spectroscopy to monitor the environment of tryptophan (Trp) residues inserted into the catalytic loop, we recently observed reorganization of this loop upon DNA binding in the absence of cofactor using the M.HhaI mutants W41F, W41F/K91W, and W41F/E94W (12). Loop positioning and the interconversion between the open and closed conformers, as determined from the intensities and rates of change in fluorescence signal are highly dependent on DNA sequence and confirm that cognate DNA stabilizes the loop-closed conformer whereas nonspecific DNA stabilizes the open conformer.In this study, W41F/K91W and W41F/E94W M.HhaI were preincubated with cognate (COG), non-cognate (NC), or nonspecific (NS) DNA and mixed with cofactor or cofactor product, AdoMet and S-adenosylhomocysteine (AdoHcy), respectively, in a stopped-flow apparatus. Differences in observed fluorescence intensity are indicative of shifts in the populations of the various loop conformers; no observable fluorescence change suggests no significant change in population and thus, essentially no loop positioning to the closed conformer. Non-cognate and cognate sequences are nearly identical but differ by a single base change, whereas the nonspecific DNA substrate has no similarity to the cognate sequence. As a methyltransferase searches for the cognate site within a genome, it must encounter both non-cognate and nonspecific DNA sequences and be able to distinguish these from the cognate sequence. We examine both binding, using the cofactor product AdoHcy, and catalysis, using the AdoMet cofactor of M.HhaI, with these various DNA substrates.  相似文献   

16.
Inhibition of EcoRI DNA methylase with cofactor analogs   总被引:5,自引:0,他引:5  
Four analogs of the natural cofactor S-adenosylmethionine (AdoMet) were tested for their ability to bind and inhibit the prokaryotic enzyme, EcoRI adenine DNA methylase. The EcoRI methylase transfers the methyl group from AdoMet to the second adenine in the double-stranded DNA sequence 5'GAATTC3'. Dissociation constants (KD) of the binary methylase-analog complexes obtained in the absence of DNA with S-adenosylhomocysteine (AdoHcy), sinefungin, N-methyl-AdoMet, and N-ethylAdoMet are 225, 43, greater than 1000, and greater than 1000 microM, respectively. In the presence of a DNA substrate, all four analogs show simple competitive inhibition with respect to AdoMet. The product of the enzymic reaction, AdoHcy, is a poor inhibitor of the enzyme (KI(AdoHcy) = 9 microM; KM(AdoMet) = 0.60 microM). Two synthetic analogs, N-methyl-AdoMet and N-ethyl-AdoMet, were also shown to be poor inhibitors with KI values of 50 and greater than 1000 microM, respectively. In contrast, the naturally occurring analog sinefungin was shown to be a highly potent inhibitor (KI = 10 nM). Gel retardation assays confirm that the methylase-DNA-sinefungin complex is sequence-specific. The ternary complex is the first sequence-specific complex detected for any DNA methylase. Potential applications to structural studies of methylase-DNA interactions are discussed.  相似文献   

17.
Ten M.HhaI residues were replaced with alanine to probe the importance of distal protein elements to substrate/cofactor binding, methyl transfer, and product release. The substitutions, ranging from 6-20 A from the active site were evaluated by thermodynamic analysis, pre-steady and steady-state kinetics, to obtain Kd(AdoMet), Kd(DNA), kcat/Km(DNA), kcat, and kmethyltransfer values. For the wild-type M.HhaI, product release steps dominate catalytic turnover while the 4-fold faster internal microscopic constant kmethyltransfer presents an upper limit. The methyl transfer reaction has DeltaH and DeltaS values of 10.3 kcal/mol and -29.4 cal/(mol K), respectively, consistent with a compressed transition state similar to that observed in the gas phase. Although the ten mutants remained largely unperturbed in methyl transfer, long-range effects influencing substrate/cofactor binding and product release were observed. Positive enhancements were seen in Asp73Ala, which showed a 25-fold improvement in AdoMet affinity and in Val282Ala, which showed a 4-fold improvement in catalytic turnover. Based on an analysis of the positional probability within the C5-cytosine DNA methyltransferase family we propose that certain conserved distal residues may be important in mediating long-range effects.  相似文献   

18.
The type-II DNA-(cytosine-5)-methyltransferase M.HhaI was overexpressed in Escherichia coli and purified to apparent homogeneity. The purification scheme exploits a unique high salt back-extraction step to solubilize M.HhaI selectively, followed by FPLC chromatography. The yield of purified protein was 0.75-1.0 mg per gram of bacterial paste. M.HhaI could be isolated in two forms: bound with its cofactor S-adenosylmethionine (AdoMet) or devoid of the cofactor. The AdoMet-bound form was capable of methylating DNA in vitro in the absence of exogenous AdoMet. From kinetic studies of the purified enzyme, values for KmAdoMet (60 nM), KiAdoHye (0.4 nM), and Kcat (0.22 s-1) were determined. The purified enzyme bound with its cofactor was crystallized by the hanging drop vapor diffusion technique. Crystals were of monoclinic space group P2(1) and had unit-cell dimensions of a = 55.3 A, b = 72.7 A, c = 91.0 A, and beta = 102.5 degrees, with two molecules of M.HhaI in each of the two asymmetric units. The crystals diffract beyond 2.5 A and are suitable for structure determination.  相似文献   

19.
The target cytosines of (cytosine-5)-DNA methyltransferases in prokaryotic and eukaryotic DNA show increased rates of C-->T transition mutations compared to non-target cytosines. These mutations are induced either by the spontaneous deamination of 5-mC-->T generating inefficiently repaired G:T rather than G:U mismatches, or by the enzyme-induced C-->U deamination which occurs under conditions of reduced levels of S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy). We tested whether various inhibitors of (cytosine-5)-DNA methyltransferases analogous to AdoMet and AdoHcy would affect the rate of enzyme-induced deamination of the target cytosine by M.HpaII and M.SssI. Interestingly, we found two compounds, sinefungin and 5'-amino-5'-deoxyadenosine, that increased the rate of deamination 10(3)-fold in the presence and 10(4)-fold in the absence of AdoMet and AdoHcy. We have therefore identified the first mutagenic compounds specific for the target sites of (cytosine-5)-DNA methyltransferases. A number of analogs of AdoMet and AdoHcy have been considered as possible antiviral, anticancer, antifungal and antiparasitic agents. Our findings show that chemotherapeutic agents with affinities to the cofactor binding pocket of (cytosine-5)-DNA methyltransferase should be tested for their potential mutagenic effects.  相似文献   

20.
We have determined the structure of a mutant (Q237W) of HhaI DNA methyltransferase, complexed with the methyl-donor product AdoHcy. The Q237W mutant proteins were crystallized in the monoclinic space group C2 with two molecules in the crystallographic asymmetric unit. Protein-protein interface calculations in the crystal lattices suggest that the dimer interface has the specific characteristics for homodimer protein-protein interactions, while the two active sites are spatially independent on the outer surface of the dimer. The solution behavior suggests the formation of HhaI dimers as well. The same HhaI dimer interface is also observed in the previously characterized binary (M.HhaI-AdoMet) and ternary (M.HhaI-DNA-AdoHcy) complex structures, crystallized in different space groups. The dimer is characterized either by a non-crystallographic two-fold symmetry or a crystallographic symmetry. The dimer interface involves three segments: the amino-terminal residues 2-8, the carboxy-terminal residues 313-327, and the linker (amino acids 179-184) between the two functional domains--the catalytic methylation domain and the DNA target recognition domain. Both the amino- and carboxy-terminal segments are part of the methylation domain. We also examined protein-protein interactions of other structurally characterized DNA MTases, which are often found as a 2-fold related 'dimer' with the largest dimer interface area for the group-beta MTases. A possible evolutionary link between the Type I and Type II restriction-modification systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号