首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Plasmodium falciparum var genes encode a diverse family of proteins, located on the surfaces of infected erythrocytes, which are implicated in the pathology of human malaria through antigenic variation and adhesion of infected erythrocytes to the microvasculature. We have constructed a complete representative telomere-to-telomere yeast artificial chromosome (YAC) contig map of the P. falciparum chromosome 8 for studies on the chromosomal organization, distribution, and expression of var genes. Three var gene loci were identified on chromosome 8, two of which map close to the telomeres at either end of the chromosome. Analysis of the previously described chromosome 2 contig map and random P. falciparum telomeric YAC clones revealed that most, if not all, 14 P. falciparum chromosomes contain var genes in a subtelomeric location. Mapping the chromosomal location of var genes expressed in a long-term culture of the P. falciparum isolate Dd2 revealed that four of the five different expressed var genes identified map within subtelomeric locations. Expression of var genes from a chromosomal domain known for frequent rearrangements has important implications for the mechanism of var gene switching and the generation of novel antigenic and adhesive phenotypes.  相似文献   

2.
3.
An immunovariant adhesion protein family in Plasmodium falciparum named erythrocyte membrane protein 1 (PfEMP1), encoded by var genes, is responsible for both antigenic variation and cytoadhesion of infected erythrocytes at blood microvasculature sites throughout the body. Elucidation of the genome sequence of P. falciparum has revealed that var genes can be classified into different groups, each with distinct 5' flanking sequences, chromosomal locations and gene orientations. Recent binding and serological comparisons suggest that this genomic organization might cause var genes to diversify into separately recombining adhesion groups that have different roles in infection and disease. Detailed understanding of PfEMP1 expression and receptor binding mechanisms during infection and of the antigenic relatedness of disease variants might lead to new approaches in prevention of malaria disease.  相似文献   

4.
The var gene family encodes Plasmodium falciparum erythrocyte membrane 1 (PfEMP1) proteins that act as virulence factors responsible for both antigenic variation and cytoadherence of infected erythrocytes. These proteins orchestrate infected erythrocyte sequestration from blood circulation and contribute to adhesion-based complications of P. falciparum malaria infections. For this study, we analysed the genetic organization and strain structure of var genes and present evidence for three separately evolving groups that have, in part, functionally diverged and differ between subtelomeric and central chromosomal locations. Our analyses suggest that a recombination hierarchy limits reassortment between groups and may explain why some var genes are unusually conserved between parasite strains. This recombination hierarchy, coupled with binding and immune selection, shapes the variant antigen repertoire and has structural, functional and evolutionary consequences for the PfEMP1 protein family that are directly relevant to malaria pathogenesis.  相似文献   

5.
The chromosome ends of human malaria parasites harbour many genes encoding proteins that are exported to the surface of infected red cells, often being involved in host-parasite interactions and immune evasion. Unlike other murine malaria parasites Plasmodium chabaudi undergoes antigenic variation during passage in the laboratory mouse and hence is a model suitable for investigation of switching mechanisms. However, little is known about the subtelomeric regions of P. chabaudi chromosomes and its variable antigens. Here we report 80 kb of sequence from an end of one P. chabaudi chromosome. Hybridization of probes spanning this region to two dimensional pulsed field gels of the genome revealed 10 multicopy gene families located exclusively in subtelomeric regions of multiple P. chabaudi chromosomes, interspersed amongst multicopy intergenic regions. Hence all chromosomes share a common subtelomeric structure, presumably playing a similar role in spatial positioning as the P. falciparum Rep20 sequence. Expression in blood stages, domains characteristic of surface antigens and copy numbers between four and several hundred per genome, indicate a functional role in antigenic variation for some of these families. We identify members of the cir family, as well as novel genes, that although clearly homologous to cir have large low complexity regions in the predicted extracellular domains. Although all families have homologues in other rodent Plasmodium species, four were previously not known to be subtelomeric. Six have homologues in human and simian malarias.  相似文献   

6.
7.
8.
9.
The structure of sex chromosomes in plants was analyzed by fluorescent in situ hybridization (FISH) with repetitive DNAs. FISH probes were successfully obtained from DNA libraries that were amplified from microdissected sex chromosomes. Some probes hybridized to the subtelomeric regions, where many kinds of repetitive DNAs are located with intrachromosomal similarity of their repeat units rather than interchromosomal similarity. For example, FISH with the subtelomeric repetitive sequence can easily show the location of the pseudoautosomal region (PAR) on the X chromosome of Silene latifolia. The other probes were localized on the interstitial region of the sex chromosomes. The interstitial region contains chloroplast DNAs or neighboring sequences of the internal telomeres, suggesting insertion or translocation occurred during differentiation of the sex chromosome. These data are very informative for understanding the structure of the plant sex chromosomes and their evolutionary process.  相似文献   

10.
11.
12.
13.
14.
15.
The Plasmodium falciparum multigene var family codes for approximately 50 variant adhesive proteins expressed in a mutually exclusive manner at the surface of infected red blood cells (iRBCs). Switching expression of var genes can lead to fundamental changes in the adhesive and antigenic properties of iRBCs. For example, a specific phenotypic switch in adhesion from CD36 to chondroitin sulphate A (CSA) is associated with malaria pathogenesis in pregnant women. The factors and DNA elements that control the expression of a particular member of the var gene family during gestational malaria remains enigmatic. Here, we report that the subtelomeric FCR3 varCSA is expressed under the control of a unique DNA element of 1.8 kb, whereas the other members of the var multigene family are flanked by common regulatory elements. The 5' varCSA-type element is conserved as a single copy in laboratory strains and clinical isolates from Brazil and West Africa and contains two distinct repetitive elements of 150 bp and 60 bp respectively. The 5' varCSA-type sequence tags a var gene in the 3D7 genome that is homologous to the FCR3 varCSA gene. A recombinant DBL gamma domain of this var gene showed specific binding to CSA. This subtelomeric varCSA gene is transcribed in the opposite sense when compared with the usual orientation of telomere-adjacent var genes. This unique arrangement might explain why the varCSA gene is relatively conserved in genetically distinct parasites despite being located in a highly recombinogenic chromosome compartment. The 5' untranslated region (UTR) of the varCSA-type sequence is also transcribed in placental isolates that bind to CSA, illustrating an important role for the unique 5' varCSA-type sequence in the regulation of var genes involved in malaria pathogenesis in pregnant women. However, this promoter is not always found to be transcribing var genes selected for expression of products that bind to CSA in vitro. Our work identifies a sequence tag for the identification of varCSA genes in placental isolates for the first time.  相似文献   

16.
The mammalian X and Y chromosomes are very different in size and gene content. The Y chromosome is much smaller than the X and consists largely of highly repeated non-coding DNA, containing few active genes. The 65-Mb human Y is homologous to the X over two small pseudoautosomal regions which together contain 13 active genes. The heterochromatic distal half of the human Yq is entirely composed of highly repeated non-coding DNA, and even the euchromatic portion of the differential region is largely composed of non-coding repeated sequences, amongst which about 30 active genes are located. The basic marsupial Y chromosome (about 10 Mb) is much smaller than that of humans or other eutherian mammals. It appears to include no PAR, since it does not undergo homologous pairing, synaptonemal complex formation or recombination with the X. We show here that the tiny dunnart Y chromosome does not share cytogenetically detectable sequences with any other chromosome, suggesting that it contains many fewer repetitive DNA sequences than the human or mouse Y chromosomes. However, it shares several genes with the human and/or mouse Y chromosome, including the sex determining gene SRY and the candidate spermatogenesis gene RBMY, implying that the marsupial and eutherian Y are monophyletic. This minimal mammalian Y chromosome might provide a good model Y in which to hunt for new mammalian Y specific genes.  相似文献   

17.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, encoded by an extremely diverse gene family called var . Understanding of the genetic organization of var genes is hampered by sequence mosaicism that results from a long history of non-homologous recombination. Here we have used software designed to analyse social networks to visualize the relationships between large collections of short var sequences tags sampled from clinical parasite isolates. In this approach, two sequences are connected if they share one or more highly polymorphic sequence blocks. The results show that the majority of analysed sequences including several var -like sequences from the chimpanzee parasite Plasmodium reichenowi can be either directly or indirectly linked together in a single unbroken network. However, the network is highly structured and contains putative subgroups of recombining sequences. The major subgroup contains the previously described group A var genes, previously proposed to be genetically distinct. Another subgroup contains sequences found to be associated with rosetting, a parasite virulence phenotype. The mosaic structure of the sequences and their division into subgroups may reflect the conflicting problems of maximizing antigenic diversity and minimizing epitope sharing between variants while maintaining their host cell binding functions.  相似文献   

18.
19.
Comparisons of the genomic structure of 3 mammalian major histocompatibility complexes (MHCs), human HLA, canine DLA, and feline FLA revealed remarkable structural differences between HLA and the other 2 MHCs. The 4.6-Mb HLA sequence was compared with the 3.9-Mb DLA sequence from 2 supercontigs generated by 7x whole-genome shotgun assembly and 3.3-Mb FLA draft sequence. For FLA, we confirm that 1) feline FLA was split into 2 pieces within the TRIM (member of the tripartite motif) gene family found in human HLA, 2) class II, III, and I regions were placed in the pericentromeric region of the long arm of chromosome B2, and 3) the remaining FLA was located in subtelomeric region of the short arm of chromosome B2. The exact same chromosome break was found in canine DLA structure, where class II, III, and I regions were placed in a pericentromeric region of chromosome 12 whereas the remaining region was located in a subtelomeric region of chromosome 35, suggesting that this chromosome break occurred once before the split of felid and canid more than 55 million years ago. However, significant differences were found in the content of genes in both pericentromeric and subtelomeric regions in DLA and FLA, the gene number, and amplicon structure of class I genes plus 2 other class I genes found on 2 additional chromosomes; canine chromosomes 7 and 18 suggest the dynamic nature in the evolution of MHC class I genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号