首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the process of red cell membrane protein synthesis we have followed the time course of [3H]leucine appearance in total protein and individual peptides of the erythrocyte membrane following injection of the amino acid into phenylhydrazine-anemic rabbits. Multiple peripheral blood samples were taken from single animals over a 5-week period. Erythrocyte membrane proteins were separated by polycrylamide gel electrophoresis in sodium dodecylsulfate and dithiothreitol; incorporation of radioactivity was determined by gel slicing and liquid scintillation spectrometry. Appearance of [3H]leucine in circulating erythrocytes reached a peak at 1–3 days, with a steady decline thereafter. The radioactive amino acid appeared first in the lowest molecular weight peptides and last in the largest peptides; at the earliest time point (8 h), little radioactivity was observed in any of the four largest peptides present in the membranes (bands A, 1, 2 and 3). Certain smaller peptides (bands 4, 5 and 9) were the predominant species labeled at this time. By 24 h all peptides showed significant incorporation. With maturation of the red cells, label largely disappeared from bands A, 9 and several smaller peptides; this was confirmed by finding that the peptides are virtually absent from mature circulating erythrocytes. These data are interpreted as showing that red cell membrane proteins are synthesized asynchronously during the life cycle of the erythrocyte; the largest peptides are made predominantly in the earlier marrow stages of development, while certain of the smaller peptides are still being synthesized in the reticulocyte stage. Several membrane proteins appear to be specific to the reticulocyte and are lost during the process of cell maturation in the circulation.  相似文献   

2.
The capability of rabbit reticulocytes to synthesize red cell membrane proteins has been tested in vitro. Reticulocyte-rich blood from phenylhydrazine-treated rabbits was incubated in vitro in a complete amino acid medium containing ferrous salts, glucose, rabbit plasma and [3-H]leucine. Red cell ghost membranes were prepared by hypotonic lysis and leucine incorporation into hemoglobin and total membrane proteins determined. The pattern of incorporation into individual peptides was determined by polyacrylamide gel electrophoresis of labeled membranes on large (19 mm) gels which were then sliced into 1 mm sections; radioactivity was compared with densitometric tracings of Coomassie blue stained analytical (6 mm) gels. Incorporation of [3-H]leucine into both hemoglobin and membrane protein was linear over 1 h. Gel analysis of labeled membranes revealed that the amino acid was primarily incorporated into peptides with molecular weights of 90 000 or less; three peptides of molecular weights 90 000, 60 000 and 33 000 showed the highest specific activity. Synthesis of the four largest peptide species was negligible. Removable of ferrous salts inhibited synthesis of both globin and membrane protein equally (approx. 50%). However, puromycin and cycloheximide preferentially inhibited the synthesis of globin as compared to membrane proteins. Reticulocytes remain capable of synthesizing a number of membrane proteins; these results are consistent with studies of red cell membrane synthesis in anemic rabbits in vivo.  相似文献   

3.
The synthesis of mouse erythrocyte membrane proteins by Friend erythroleukemia cells during dimethyl sulfoxide-induced differentiation was studied. Untreated and dimethyl sulfoxide-treated cells were incubated with l-[3H] leucine and the incorporation of radioactivity into total trichloroacetic acid-insoluble proteins and into proteins immunoprecipitated with a multivalent rabbit antibody to mouse erythrocyte membranes was determined. The immunoprecipitated membrane proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and radioactivity was detected by fluorography. The incorporation of l-[3H]leucine into total cell proteins was linear for 20 min in both untreated and treated cells. Exposure of the cells to dimethyl sulfoxide had an inhibitory effect on protein synthesis, with a significant decrease noted on the fourth day of treatment and a continued decline occurring until the seventh day when protein synthesis was 42% that of untreated cells. The synthesis of erythrocyte membrane proteins was 0.49% that of total cell proteins in untreated cells, was increased to 1.27% by the third day of treatment and remained at about 1% of total protein synthesis from the fourth to the seventh day. Untreated cells synthesized low levels of spectrin, bands 5 and 6 proteins. Treatment with dimethyl sulfoxide caused a staggered increase in synthesis of a number of erythrocyte membrane proteins. Spectrin synthesis increased 4-fold by the third day of treatment and declined thereafter. The synthesis of membrane proteins with electrophoretic mobilities similar to bands 3 and 4 was increased 2–3-fold by the fourth day, while bands 6 and 5 proteins attained maximal synthesis (4-fold) on the fifth and sixth days of treatment.  相似文献   

4.
The capability of rabbit reticulocytes to synthesize red cell membrane proteins has been tested in vitro. Reticulocyte-rich blood from phenylhydrazine-treated rabbits was incubated in vitro in a complete amino acid medium containing ferrous salts, glucose, rabbit plasma and [3H]leucine. Red cell ghost membranes were prepared by hypotonic lysis and leucine incorporation into hemoglobin and total membrane proteins determined. The pattern of incorporation into individual peptides was determined by polycrylamide gel electrophoresis of labeled membranes on large (19 mm) gel which were then sliced into 1 mm sections; radioactivity was compared with densitometric tracings of Coomassie blue stained analytical (6 mm) gels. Incorporation of [3H]leucine into both hemoglobin and membrane protein was linear over 1 h. Gel analysis of labeled membranes revealed that the amino acid was primarily incorporated into peptides with molecular weights of 90 000 or less; three peptides of molecular weights 90 000, 60 000 and 33 000 showed the highest specific activity. Synthesis of the four largest peptide species was negligible. Removal of ferrous salts inhibited synthesis of both globin and membrane protein equally (approx. 50%). However, puromycin and cycloheximide preferentially inhibited the synthesis of globin as compared to membrane proteins. Reticulocytes remain capable of synthesizing a number of membrane proteins; these results are consistent with studies of red cell membrane synthesis in anemic rabbits in vivo.  相似文献   

5.
The incorporation of [3H]leucine in vivo into very low density lipoproteins (VLDL) from the rat hepatic Golgi apparatus and serum was studied. A Golgi-rich fraction isolated on a discontinuous sucrose gradient between 0.5 and 1.1 M was found to contain VLDL having common antigenic determinants with serum VLDL. The incorporation of the [3H]leucine into the Golgi VLDL and serum VLDL suggested a precursor-product relationship. Analysis of the apoproteins of the Golgi VLDL by polacrylamide gel electrophoresis revealed protein bands with similar mobility to those of serum VLDL, except that the former contained virtually no rapidly migrating peptides with the mobility of serum apo-C-II and apo-C-III. The pattern of incorporation of the [3H]leucine into the apoproteins was similar in VLDL from Golgi apparatus and serum, except for the absence of radioactivity in the area of the gel of Golgi apo-VLDL corresponding to apo-C-II and apo-C-III. The radioactive amino acid was incorporated predominantly into the Golgi apo-VLDL bands with similar mobility to apo-B and an apoprotein or group of apoproteins containing the arginine-rich peptide of serum VLDL. In vitro incubation of the Golgi VLDL with [3H]leucine-labeled HDL resulted in the acquisition of a number of proteins, including the rapidly migrating proteins. Administration of colchicine prior to the injection of [3H]leucine resulted in the appearance of gel bands and radioactivity in the apo-C-II and apo-C-III areas of Golgi apo-VLDL, suggesting that these can be acquired if secretion of VLDL is slowed or inhibited. The hepatic Golgi apparatus was then divided into fractions of predominantly forming face (GF3) or secretory granules (GF1). After polyacrylamide gel electrophoresis of the apo-VLDL from GF, no visible bands or incorporation of [3H]leucine was found in the region of apo-C-II or apo-C-III. However VLDL from GF1, showed visible and radioactive bands in the apo-C-II and apo-C-III area although they represented a much smaller proportion of the total apoprotein than was found in the corresponding serum apo-VLDL. In the isolated perfused liver the percentage incorporation of [3H]leucine into the rapidly migrating apoproteins of Golgi VLDL was considerably less than that found in the corresponding apoproteins of perfusate VLDL, where circulating C lipoproteins are virtually absent. The data indicate that nascent VLDL begins to acquire the C-II and C-III apoproteins during its passage through the Golgi apparatus but that the main acquisition occurs during or after secretion into the space of Disse.  相似文献   

6.
Penetration of Toxoplasma gondii tachyzoites was studied in vitro using murine erythroid cells at different stages of development. Toxoplasma gondii penetrated nucleated erythroblasts and macroreticulocytes from foetal mouse liver and the circulating erythrocytes of foetal, neonatal or severely anaemic adult mice. Immature reticulocytes were more susceptible to penetration than mature ones, indicating that some change in their membrane properties occurred during maturation. The present results confirmed our previous finding that the major erythrocyte membrane-specific proteins do not prevent erythrocyte penetration since these proteins are known to be present in the reticulocyte membrane.  相似文献   

7.
The transferrin receptor is a member of a group of reticulocyte surface proteins that disappear from the membranes of reticulocytes as the cells mature to the erythrocyte stage. The selective loss of membrane proteins appears to be preceded by the formation of multivesicular bodies (MVBs). At the reticulocyte stage, many species of mammalian red cells including man, and one nucleated avian species (chicken), contain these intracellular structures in both natural and induced anemias. Also characteristic of blood containing reticulocytes is the presence of circulating vesicles (exosomes), which contain proteins and lipids characteristic of the plasma membrane. These exosomes appear to arise from the contents of the MVBs, after the fusion of MVBs with the plasma membrane. The proteins in the exosomes are those frequently lost during red cell maturation (e.g., transferrin receptor). The major transmembrane proteins (such as the anion transporter) are fully retained into the mature red cell, indicating a highly selective mechanism of recognition of a specific group of proteins. The exosomes are largely devoid of soluble proteins and proteins associated with lysozomes or mitochondria. A speculative model is proposed which addresses the questions of the maturation-induced structural changes in a class of membrane proteins, their recognition and selective loss involving exosome formation, and the release of exosomes to the circulation.  相似文献   

8.
Plasma membranes of normal duckling erythrocytes were prepared by blender homogenization and nitro-en decompression. Surface membrane vesicles of red cells infected with the avian malaria Plasmodium lophurae were produced by nitrogen decompression. Membranes of erythrocyte-free malaria parasites were removed from cytoplasmic constituents by Dounce homogenization. These membranes were collected by centrifugation in a sucrose step gradient and purified on a linear sucrose gradient. Red cell membranes had a buoyant density of 1.159 g/cm3, whereas plasmodial membranes banded at 2 densities: 1.110 g/cm3 and 1.158 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the isolated red cell membranes revealed 7 major protein bands with molecular weights (MW) ranging from 230, 000 to 22,000, and 3 glycoprotein bands with MW of 160,000, 88,000 and 37,000. Parasite membranes also had 7 major bands with MW ranging from 100,000 to 22,000. No glycoproteins were identifiable in these membranes. The proteins of the surface membranes from infected red cells had MW similar to those from normal red cells; however, there was some evidence of a reduction in the amount of the high MW polypeptides. The red cell membrane contained 79 nmoles sialic acid/mg membrane protein, whereas plasmodial membranes had 8 nmoles sialic acid/mg membrane protein. The sialic acid content of the surface membranes of infected red cells was significantly smaller than that of normal cells. Lactoperoxidase-glucose oxidase-catalyzed iodination of intact normal and malaria-infected erythrocytes labeled 7 surface components. Although no observable differences in iodinatable proteins were seen in these preparations, there was a striking reduction in the iodinatability of erythrocytic membranes obtained from P. lophurae-infected cells. Erythrocyte-free plasmodia bound very little radioactive iodine; the small amount of radioactivity was distributed among 3 major bands with MW of 42,000, 32,000 and 28,000. It is suggested that the alterations of the surface of the P. lophurae-infected erythrocyte do not occur by a wholesale insertion of plasmodial membrane proteins into the red cell plasma membrane, but rather that there are parasite-mediated modifications of existing membrane polypeptides.  相似文献   

9.
Reticulocytes of increasing maturity were separated by dextran gradient centrifugation. The accumulation in the membrane of the anion transport protein and other erythrocyte membrane proteins was studied during reticulocyte maturation by separating reticulocytes after incubation with [35S]methionine. The incorporation of the reticulocyte membrane proteins was shown to be sequential, the anion transport protein being inserted at a very early stage in the cells' maturation.  相似文献   

10.
A new approach to the study of the molecular arrangements of proteins in membranes is described. Irradiation with visible light of native erythrocytes or washed erythrocyte membranes suspended in buffers containing a) riboflavin, fluorescein or fluorescein coupled to dextran and b) 3H-labelled tryptophan resulted in incorporation of radioactivity into the membrane proteins. Polyacrylamide gel electrophoresis of solubilized membranes followed by radioactivity measurements of the separated membrane proteins revealed that in native erythrocytes the protein components known to be located at the exterior cell surface, Band 3 and the major sialoglycoproteins became specifically labelled, whereas in washed lysed cells all of the major membrane proteins were labelled.  相似文献   

11.
SYNOPSIS. Plasma membranes of normal duckling erythrocytes were prepared by blender homogenization and nitrogen decompression. Surface membrane vesicles of red cells infected with the avian malaria Plasmodium lophurae were produced by nitrogen decompression. Membranes of erythrocyte-free malaria parasites were removed from cytoplasmic constituents by Dounce homogenization. These membranes were collected by centrifugation in a sucrose step gradient and purified on a linear sucrose gradient. Red cell membranes had a buoyant density of 1.159 g/cm3, whereas plasmodial membranes banded at 2 densities: 1.110 g/cm3 and 1.158 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the isolated red cell membranes revealed 7 major protein bands with molecular weights (MW) ranging from 230,000 to 22,000, and 3 glycoprotein bands with MW of 160,000, 88,000 and 37,000. Parasite membranes also had 7 major bands with MW ranging from 100,000 to 22,000. No glycoproteins were identifiable in these membranes. The proteins of the surface membranes from infected red cells had MW similar to those from normal red cells; however, there was some evidence of a reduction in the amount of the high MW polypeptides. The red cell membrane contained 79 nmoles sialic acid/mg membrane protein, whereas plasmodial membranes had 8 nmoles sialic acid/mg membrane protein. The sialic acid content of the surface membranes of infected red cells was significantly smaller than that of normal cells. Lactoperoxidase-glucose oxidase-catalyzed iodination of intact normal and malaria-infected erythrocytes labeled 7 surface components. Although no observable differences in iodinatable proteins were seen in these preparations, there was a striking reduction in the iodinatability of erythrocytic membranes obtained from P. lophurae-infected cells. Erythrocyte-free plasmodia bound very little radioactive iodine; the small amount of radioactivity was distributed among 3 major bands with MW of 42,000, 32,000 and 28,000. It is suggested that the alterations of the surface of the P. lophurae-infected erythrocyte do not occur by a wholesale insertion of plasmodial membrane proteins into the red cell plasma membrane, but rather that there are parasite-mediated modifications of existing membrane polypeptides.  相似文献   

12.
This study describes the interaction of molybdenum with blood components. Molybdenum-99 was added to blood, and after four washings, 3% of the total radioactivity was found in red cells. More specifically, the radioactivity was determined to be associated with the cell membrane. Molybdenum-99 in the +VI form did not interact with the human erythrocyte membrane; however, Mo(V) forms did interact. Of five different compounds, the highes uptake was observed with a brown Mo(V)-ascorbate complex generated from Mo(VI) and ascorbic acid in the molar ratio 1∶20. A membrane suspension of Mo-ascorbate-treated human erythrocytes was prepared and the solubilized proteins were separated on a polyacrylamide gel in the presence of sodium dodecyl sulfate (SDS). Molybdenum-99 binding to spectrin was demonstrated, as well as some minor interactions with membrane hemoglobin and bands 6 and 8.  相似文献   

13.
The enzymatic carboxyl methyl esterification of erythrocyte membrane proteins has been investigated in three different age-related fractions of human erythrocytes. When erythrocytes of different mean age, separated by density gradient centrifugation, were incubated under physiological conditions (pH 7.4, 37 degrees C) in the presence of L-[methyl-3H]methionine, the precursor in vivo of the methyl donor S-adenosylmethionine, a fourfold increase in membrane-protein carboxyl methylation was observed in the oldest cells compared with the youngest ones. The identification of methylated species, based on comigration of radioactivity with proteins stained with Coomassie blue, analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, shows, in all cell fractions, a pattern similar to that reported for unfractionated erythrocytes. However in the membrane of the oldest erythrocytes the increase in methylation of the cytoskeletal proteins, bands 2.1 and 4.1, appears to be significantly more marked compared with that observed in the other methylated polypeptides. Furthermore the turnover rate of incorporated [3H]methyl groups in the membrane proteins of the oldest cells markedly increases during cell ageing. Particularly in band 4.1 the age-related increase in methyl esterification is accompanied by a significant reduction of the half-life of methyl esters. The activity of cytoplasmic protein methylase II does not change during cell ageing, while the isolated ghosts from erythrocytes of different age show an age-related increased ability to act as methyl-accepting substrates, when incubated in presence of purified protein methylase II and methyl-labelled S-adenosylmethionine, therefore the relevance of membrane structure in determining membrane protein methylation levels can be postulated. Finally the possible correlation of this posttranslational protein modification with erythrocyte ageing is discussed.  相似文献   

14.
Electron spin resonance, hematologic, and deformability studies of erythrocytes from patients with Huntington's disease have been performed A decreased deformability of Huntington's disease erythrocytes compared to normal controls was demonstrated. No difference in erythrocyte hematologic indices, osmotic fragility, reticulocyte counts, or intracellular Na+ concentration was found. Huntington's disease serum had no demonstrable effect on electron spin resonance parameters of a protein-specific spin label attached to membrane proteins in control erythrocytes compared to the effect of control serum. This finding suggests that under the conditions employed no serum component or circulating factor is responsible for the changes in the physical state of membrane proteins in Huntington's disease erythrocytes (Butterfield, D.A., Oeswein, J.Q. and Markesbery, W.R. (1977) Nature 267, 453--455). No alteration in lipid fluidity of Huntington's disease erythrocyte membranes could be discerned suggesting that the underlying molecular defect in Huntington's disease involves a membrane protein. The results of the present studies on erythrocytes strongly support the concept that Huntington's disease is associated with a generalized membrane abnormality.  相似文献   

15.
The present study investigated the effects of injected darbepoetin [novel erythropoietin stimulating protein (NESP)] on the density of three erythrocyte membrane transport proteins: the lactate-H+ cotransporter (monocarboxylate transporter 1), the chloride/bicarbonate exchanger 1 (anion exchanger 1), and the water channel aquaporin 1. Thirteen subjects were injected with NESP once a week for 4 wk. Blood samples were obtained before, during, and after the injection period, and the erythrocyte transport proteins were determined by Western blotting. The NESP injections induced a transient increase in hematocrit, red cell volume, and reticulocyte fraction. The density of aquaporin 1 protein was higher (maximal increase +59%) (P < 0.01) during the injection period compared with the preinjection value and lower (P < 0.01) after the injection period. The density of anion exchanger 1 protein was higher (maximal increase +15%) (P < 0.05) during the injection period compared with the preinjection value and tended (P = 0.06) to be lower after the injection period than before the injection period. The density of the erythrocyte monocarboxylate transporter 1 protein was higher (maximal increase +43%) (P < 0.05) during the injection period than in the preinjection period. Age separation experiments using self-creating Percoll gradients demonstrated a higher density of membrane transport proteins in young red blood cells. These data suggest that the NESP-induced increase in membrane transport proteins is caused by a higher fraction of newly formed erythrocytes (and reticulocytes), which have a higher density of membrane transport proteins. However, increased incorporation of membrane proteins during erythrocyte formation may also be involved. We suggest that NESP improves the quality of erythrocyte membrane transport through these mechanisms.  相似文献   

16.
The mature mammalian erythrocyte has a unique membranoskeleton, the spectrin-actin complex, which is responsible for many of the unusual membrane properties of the erythrocyte. Previous studies have shown that in successive stages of differentiation of the erythropoietic series leading to the mature erythrocyte there is a progressive increase in the density of spectrin associated with the membranes of these cells. An important stage of this progression occurs during the enucleation of the late erythroblast to produce the incipient reticulocyte, when all of the spectrin of the former cell is sequestered to the membrane of the reticulocyte. The reticulocyte itself, however, does not exhibit a fully formed membranoskeleton. In particular, the in vitro binding of multivalent ligands to specific membrane receptors on the reticulocyte was shown to cause a clustering of some fractions of these ligand-receptor complexes into special mobile domains on the cell surface. These domains of clustered ligand-receptor complexes became invaginated and endocytosed as small vesicles. By immunoelectron microscopic experiments, these invaginations and endocytosed vesicles were found to be specifically free of spectrin on their cytoplasmic surfaces. These earlier findings then raised the possibility that the maturation of reticulocytes to mature erythrocytes in vivo might involve a progressive loss of reticulocyte membrane free of spectrin, thereby producing a still more concentrated spectrin-actin membranoskeleton in the erythrocyte than in the reticulocyte. This proposal is tested experimentally in this paper. In vivo reticulocytes were observed in ultrathin frozen sections of spleens from rabbits rendered anemic by phenylhydrazine treatment. These sections were indirectly immunolabeled with ferritin-antibody reagents directed to rabbit spectrin. Most reticulocytes in a section had one or more surface invaginations and one or more intra-cellular vesicles that were devoid of spectrin labeling. The erythrocytes in the same sections did not exhibit these features, and their membranes were everywhere uniformly labeled for spectrin. Spectrin-free surface invaginations and intracellular vesicle were also observed with reticulocytes within normal rabbit spleens. Based on these results, a scheme for membrane remodeling during reticulocyte maturation in vivo is proposed.  相似文献   

17.
The oxidized low-density lipoprotein (Ox-LDL) plays an important role in atherosclerosis, yet it remains unclear if it damages circulating erythrocytes. In this study, erythrocyte deformability and its membrane proteins after Ox-LDL incubations are investigated by micropipette aspiration, thiol radical measurement, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Results show that Ox-LDL incubation reduces the erythrocyte deformability, decreases free thiol radical contents in erythrocytes, and induces the cross-linking among membrane proteins. SDS-PAGE analysis reveals a high molecular weight (HMW) complex as well as new bands between spectrins and band 3 and reduced ratios between band 3 and other major membrane skeletal proteins. Analyses indicate that Ox-LDL makes erythrocytes harder to deform through a molecular mechanism by which the oxidation of free thiol radicals forms disulfide bonds among membrane skeletal proteins.  相似文献   

18.
In order to determine the capacity of sickle cells to undergo transglutaminase-catalyzed cross-linking of membrane proteins, human normal and sickle erythrocytes were incubated with [ring-2-14C]histamine in the presence of Ca2+ and ionophore A23187. The [14C]histamine incorporation into membrane components was observed in freshly prepared erythrocytes. Incorporation of radioactivity into spectrin and Band 3 membrane components was significantly (P less than 0.001) less in sickle erythrocytes than in normal cells. Transglutaminase deficiency was excluded by the finding of increased activity of this enzyme in sickle cells from patients with reticulocytosis. The incorporation of [3H]spermine into red cell membranes was also less in sickle erythrocytes than in normal cells under the same conditions of incubation used for [ring-2-14C]histamine. Sickle erythrocytes were more permeable to these amines than normal cells. It is proposed that the gamma-glutamyl sites of membrane proteins in sickle erythrocytes are less accessible for transglutaminase-catalyzed cross-linking to histamine and polyamines in vitro, perhaps due to prior in vivo activation of this enzyme by the increased calcium in sickle cells and/or shielding secondary to altered membrane organization.  相似文献   

19.
The level of carboxyl methylation of membrane proteins has been measured in intact human erythrocyte populations of different ages separated by density gradient centrifugation. Age separation was confirmed by measurement of cytosolic pyruvate kinase specific activity in each fraction. When cells of different ages were incubated with L-[methyl-3H]methionine, the steady state level of 3H radioactivity covalently bound to membrane proteins is observed to be at least 3-fold higher in older erythrocytes. Because the specific radioactivity of the methyl group donor S-adenosyl-L-[methyl-3H]methionine was identical in all age fractions, this represents an increase in the extent of modification of membrane proteins by carboxyl methylation. Of the three major methylated erythrocyte membrane proteins, this increase in carboxyl methylation with age is 4 to 7-fold for bands 2.1 and 3, while the increase in band 4.1 is 3 to 4-fold. This increase in the steady state level of methylation with age cannot be explained by changes in either the intrinsic rate of methyl transfer or by changes in the rate constant of methyl turnover. We, therefore, propose that the age-dependent change in carboxyl methylation is due to an increase in the number of available acceptor sites as the erythrocyte ages in vivo. Since methylation of acidic residues on erythrocyte membrane proteins has been detected exclusively on D-aspartic acid residues (McFadden, P. N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2460-2464), these results are consistent with an accumulation of D-aspartic acid in membrane protein due to spontaneous racemization a the cell ages. The relationship of these observations to possible functions of erythrocyte membrane protein carboxyl methylation is discussed.  相似文献   

20.
Membrane proteins in senescent erythrocytes.   总被引:2,自引:0,他引:2       下载免费PDF全文
The examination of erythrocyte senescence has been facilitated by recent advances in techniques for the isolation of aged red cells. One of these methods, which uses biotinylated rabbit erythrocytes, has been used to examine the state of membrane proteins in effete cells. These aged red cells were found to have normal ratios of alpha-spectrin and beta-spectrin as well as normal levels of ankyrin. The observation concerning ankyrin is particularly important due to the sensitivity of this protein to proteolysis and the postulated action of proteinases in the aging process. The senescent erythrocytes were also found to have an altered ratio of bands 4.1a and 4.1b without any apparent change in the total level of 4.1. In addition, the analysis of the aged cell membranes did not show any large-molecular-mass aggregated protein at the origin of the SDS/polyacrylamide gels, indicating a lack of transglutaminase activity in the senescence process for rabbit erythrocytes. These results indicate that aging of the rabbit erythrocyte is not accompanied by gross proteolytic degradation or transglutaminase-catalysed cross-linking of membrane components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号