首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Effect of increased temperature during egg maturation on the mass of single eggs produced by the offspring was investigated experimentally in Atlantic salmon Salmo salar. Mass of eggs produced by next‐generation females was larger when their mothers experienced warmer water during the last two months of egg maturation, relative to those that experienced unheated river water. There was no similar trans‐generational paternal effect on offspring egg mass.  相似文献   

2.
Male Atlantic salmon follow a conditional strategy, becoming either "combatants" that undertake a seaward migration and spend at least a year at sea or "sneakers" that remain in freshwater and mature as parr. A variety of physiological indices showed significant but small differences between the offspring of males that use these two reproductive tactics. Offspring fathered by anadromous male Atlantic salmon (Salmo salar L.) showed greater muscular development and muscle metabolic capacities but lower spontaneous movements than those fathered by mature male parr. At hatch and at maximum attainable wet weight (MAWW), offspring fathered by anadromous males had higher activities of mitochondrial (cytochrome C oxidase and citrate synthase) and glycolytic (lactate dehydrogenase [LDH]) enzymes than progeny of mature male parr. Enzymatic profiles of progeny of anadromous fathers also suggested greater nitrogen excretion capacity (glutamate dehydrogenase) and increased muscular development (creatine kinase and LDH) than in the progeny of mature parr. At MAWW, juveniles fathered by mature parr made considerably more spontaneous movements, presumably increasing their energy expenditures. For juveniles fathered by anadromous males, total cross-sectional areas of white and red muscle at hatch were higher due to the greater number of large-diameter fibers. We suggest that the slightly lower metabolic capacities and muscular development of alevins fathered by mature parr could reflect differences in energy partitioning during their dependence on vitellus. Greater spontaneous movements of offspring of mature male parr could favor feeding and growth after the resorption of the vitellus.  相似文献   

3.
Atlantic salmon (Salmo solar, Salmonidae) show a diversity of life history, behavioural and morphological adaptations for reproduction which have evolved as an outcome of competition to maximize reproductive success. Reproductive traits of females have been shaped principally by natural selection for offspring production and survival, those of males by sexual selection for access to matings. Female Atlantic salmon invest approximately six times more energy in offspring production (i.e. gonads) than males and face an important trade-off between number and size of eggs to produce that will maximize the number of surviving offspring. Timing of breeding and the construction of nests appear adapted to increase offspring survival. The most important determinant of female breeding success is body size because it affords high fecundity, access to breeding territories and decreased probability of nest destruction. Asynchronous female spawning and the male ability to spawn rapidly and repeatedly results in male-biased operational sex ratios that generate intense male competition for mates. This has likely been responsible for the evolution of elaborate male secondary sexual characters associated with fighting and status signalling. Furthermore, it has given rise, through frequency-dependent selection, to two alternative male breeding phenotypes: (1) large, anadromous males; and (2) small, mature male parr. Anadromous males invest heavily in behavioural activity on the spawning grounds, searching and fighting for mates and courting them, with body size being an important determinant of their breeding success. This behavioural activity carries a heavy cost, as anadromous males have significantly reduced survival relative to females. In contrast, mature male parr invest proportionally more in testes for sperm competition and attempt to sneak access to matings. While this behaviour also carries costs in terms of subsequent growth and survival, male parr are more likely to breed again, either prior to or following a migration to sea, than anadromous males. While knowledge about the breeding of Atlantic salmon is detailed, we are only beginning to understand the ultimate causes and/or functional significances of their reproductive strategies. Predictive models of the life history variation are developing, focusing on the need for empirical study and testing of life history and reproductive patterns.  相似文献   

4.
MHC-mediated mate choice increases parasite resistance in salmon   总被引:1,自引:0,他引:1  
Natural (parasite-driven) and sexual selection are thought to maintain high polymorphism in the genes of the major histocompatibility complex (MHC), but support for a link between mate choice, MHC variation and increased parasite resistance is circumstantial. We compared MHC diversity and Anisakis loads among anadromous Atlantic salmon (Salmo salar L.) returning to four rivers to spawn, which had originated from natural spawning (parents allowed to mate freely) or artificial crosses (parents deprived from the potential benefits of mate choice). We found that the offspring of artificially bred salmon had higher parasite loads and were almost four times more likely to be infected than free-mating salmon, despite having similar levels of MHC diversity. Moreover, the offspring of wild salmon were more MHC dissimilar than the offspring of artificially crossed salmon, and uninfected fish were more dissimilar for MHC than infected fish. Thus, our results suggest a link between disassortative mating and offspring benefits and indicate that MHC-mediated mate choice and natural (parasite-driven) selection act in combination to maintain MHC diversity, and hence fitness. Therefore, artificial breeding programmes that negate the potential genetic benefits of mate choice may result in inherently inferior offspring, regardless of population size, rearing conditions or genetic diversity.  相似文献   

5.
In species with complex life cycles, life history theory predicts that fitness is affected by conditions encountered in previous life history stages. Here, we use a 4‐year pedigree to investigate if time spent in two distinct life history stages has sex‐specific reproductive fitness consequences in anadromous Atlantic salmon (Salmo salar). We determined the amount of years spent in fresh water as juveniles (freshwater age, FW, measured in years), and years spent in the marine environment as adults (sea age, SW, measured in sea winters) on 264 sexually mature adults collected on a river spawning ground. We then estimated reproductive fitness as the number of offspring (reproductive success) and the number of mates (mating success) using genetic parentage analysis (>5,000 offspring). Sea age is significantly and positively correlated with reproductive and mating success of both sexes whereby older and larger individuals gained the highest reproductive fitness benefits (females: 62.2% increase in offspring/SW and 34.8% increase in mate number/SW; males: 201.9% offspring/SW and 60.3% mates/SW). Younger freshwater age was significantly related to older sea age and thus increased reproductive fitness, but only among females (females: ?33.9% offspring/FW and ?32.4% mates/FW). This result implies that females can obtain higher reproductive fitness by transitioning to the marine environment earlier. In contrast, male mating and reproductive success was unaffected by freshwater age and more males returned at a younger age than females despite the reproductive fitness advantage of later sea age maturation. Our results show that the timing of transitions between juvenile and adult phases has a sex‐specific consequence on female reproductive fitness, demonstrating a life history trade‐off between maturation and reproduction in wild Atlantic salmon.  相似文献   

6.
In this study, individual growth of juvenile offspring of anadromous and freshwater resident brown trout Salmo trutta and crosses between the two from the River Imsa, Norway, was estimated. The juveniles were incubated until hatching at two temperatures (±S.D. ), either 4.4 ± 1.5°C or 7.1 ± 0.6°C. Growth rate was estimated for 22 days in August–September when the fish on average were c. 8 g in wet mass, and the estimates were standardized to 1 g fish dry mass. Offspring of anadromous S. trutta grew better at both 15 and 18°C than offspring of freshwater resident S. trutta or offspring of crosses between the two S. trutta types. This difference appears not to result from a maternal effect because anadromous S. trutta grew better than the hybrids with anadromous mothers. Instead, this appears to be an inherited difference between the anadromous and the freshwater resident fish lending support to the hypothesis that anadromous and freshwater resident S. trutta in this river differ in genetic expression. Egg incubation temperature of S. trutta appeared not to influence the later growth as reported earlier from the studies of Atlantic salmon Salmo salar.  相似文献   

7.
I manipulated egg size and followed individual mass trajectories from the egg stage in Atlantic salmon to test for effects of size, and for interactions between size and paternal body mass, on offspring performance in strongly food-limited environments. Egg size had a strong effect on body mass at yolk absorption, causing juveniles originating from large eggs to outgrow their siblings from small eggs. This corroborates previous findings of egg size effects under more benign environments, and demonstrates that positive effects of egg size on offspring success are manifested even under strong food-limitation. Previously reported negative effects of being large during the critical period for survival in dense populations are thus likely related to social interactions, rather than to effects of density on total food abundance in the environment. The effect of egg size on offspring performance, and hence the optimal egg size, was independent of paternal body mass.  相似文献   

8.
Latitudinal variation in egg size and number in anadromous masu salmon Oncorhynchus masou was examined. Relatively greater variation in egg size occurred among rivers than among females within rivers or within females. Egg size was generally greater and egg number generally lower at more northerly latitudes.  相似文献   

9.
The river‐resident Salmo salar (“småblank”) has been isolated from other Atlantic salmon populations for 9,500 years in upper River Namsen, Norway. This is the only European Atlantic salmon population accomplishing its entire life cycle in a river. Hydropower development during the last six decades has introduced movement barriers and changed more than 50% of the river habitat to lentic conditions. Based on microsatellites and SNPs, genetic variation within småblank was only about 50% of that in the anadromous Atlantic salmon within the same river. The genetic differentiation (FST) between småblank and the anadromous population was 0.24. This is similar to the differentiation between anadromous Atlantic salmon in Europe and North America. Microsatellite analyses identified three genetic subpopulations within småblank, each with an effective population size Ne of a few hundred individuals. There was no evidence of reduced heterozygosity and allelic richness in contemporary samples (2005–2008) compared with historical samples (1955–56 and 1978–79). However, there was a reduction in genetic differentiation between sampling localities over time. SNP data supported the differentiation of småblank into subpopulations and revealed downstream asymmetric gene flow between subpopulations. In spite of this, genetic variation was not higher in the lower than in the upper areas. The meta‐population structure of småblank probably maintains genetic variation better than one panmictic population would do, as long as gene flow among subpopulations is maintained. Småblank is a unique endemic island population of Atlantic salmon. It is in a precarious situation due to a variety of anthropogenic impacts on its restricted habitat area. Thus, maintaining population size and avoiding further habitat fragmentation are important.  相似文献   

10.
Selection against large eggs has been proposed for aquatic environments, putatively because large eggs should have more difficulty obtaining the required oxygen. Here, we use brown trout (Salmo trutta) eggs to provide an experimental test of this hypothesis. At high levels of dissolved oxygen (14 mg l(-1)), egg survival was high and independent of egg size. At low oxygen levels (2.3 mg l(-1)), survival decreased overall, and was higher for large-egged than small-egged siblings. Thus, contrary to conventional expectation, low oxygen levels selected for large rather than small eggs. A second experiment using Atlantic salmon (S. salar) eggs indicated that oxygen consumption increases relatively slowly with increasing egg mass (allometric constant = 0.44). The failure of the conventional 'bigger is worse during incubation' hypothesis may thus be due to the erroneous assumption that oxygen consumption increases at a greater rate with increasing egg mass than does the egg surface area that is available for oxygen diffusion. We also demonstrate, using data from Atlantic salmon, that nest-specific oxygen consumption decreases with increasing egg size, but that this effect is more pronounced for large than for small females. This may help to explain the positive correlation between adult body size and egg size observed in fishes that cluster their eggs.  相似文献   

11.
Rollinson N  Hutchings JA 《Oecologia》2011,166(4):889-898
Positive associations between maternal investment per offspring and maternal body size have been explained as adaptive responses by females to predictable, body size-specific maternal influences on the offspring’s environment. As a larger per-offspring investment increases maternal fitness when the quality of the offspring environment is low, optimal egg size may increase with maternal body size if larger mothers create relatively poor environments for their eggs or offspring. Here, we manipulate egg size and rearing environments (gravel size, nest depth) of Atlantic salmon (Salmo salar) in a 2 × 2 × 2 factorial experiment. We find that the incubation environment typical of large and small mothers can exert predictable effects on offspring phenotypes, but the nature of these effects provides little support to the prediction that smaller eggs are better suited to nest environments created by smaller females (and vice versa). Our data indicate that the magnitude and direction of phenotypic differences between small and large offspring vary among maternal nest environments, underscoring the point that removal of offspring from the environmental context in which they are provisioned in the wild can bias experimentally derived associations between offspring size and metrics of offspring fitness. The present study also contributes to a growing literature which suggests that the fitness consequences of egg size variation are often more pronounced during the early juvenile stage, as opposed to the egg or larval stage.  相似文献   

12.
The genetic diversity of anadromous and freshwater Atlantic salmon ( Salmo salar ) populations from north-west Russia and other north European locations was compared using microsatellite variation to evaluate the importance of anadromous migration, population size and population glacial history in determining population genetic diversity and divergence. In anadromous Atlantic salmon populations, the level of genetic diversity was significantly higher and the level of population divergence was significantly lower than among the freshwater Atlantic salmon populations, even after correcting for differences in stock size. The phylogeographic origin of the populations also had a significant effect on the genetic diversity characteristics of populations: anadromous populations from the basins of the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than anadromous populations from the Baltic Sea basin. Among the freshwater populations, the result was the opposite: the Baltic freshwater populations were more variable. The results of this study imply that differences in the level of long-term gene flow between freshwater populations and anadromous populations have led to different levels of genetic diversity, which was also evidenced by the hierarchical analysis of molecular variance. Furthermore, the results emphasize the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash. Hence, high conservation status is warranted in order to ensure the long-term survival of the limited number of European populations with this life-history strategy.  相似文献   

13.
Comparison of the different populations of non-anadromous Atlantic salmon in Europe has revealed some common traits. The non-anadromous populations probably became isolated from the anadromous salmon populations during a period of rapid land-upheaval after the last ice age, about 10 000 years ago. The oceanic temperature in the eastern part of the Atlantic was especially low in this period. This probably diminished the advantage gained from the anadromous habit. During this period the low temperatures in the rivers probably increased the frequency of females which matured without migrating seawards. A large number of individuals in the different populations seems to have been favourable for the formation and survival of such races. The occurrence of a lake in such a river system would probably ease the transition to non-anadromous behaviour, because the salmon would not then be forced to adjust its entire life-history when isolated (the salmon could spawn in the river in the usual manner and the smolts then migrate downstream into lakes). Larger lakes would also seem to infer problems for the navigation of the smolts towards the outlet. The only known exception is the river-living land-locked salmon population found in the River Namsen, Norway.
The factors mentioned above have led to an increase in the probability of occurrence and thriving of mature females without a sea migration or to a decrease in the competitive advantage of anadromous behaviour. The above mentioned similarities can explain the seemingly casual distribution of the non-anadromous populations of Atlantic salmon in Europe.  相似文献   

14.
It has been hypothesized that salmonids use olfactory cues to return to their natal rivers and streams. However, the key components of the molecular pathway involved in imprinting and homing are still unknown. If odorants are involved in salmon homing migration, then olfactory receptors should play a critical role in the dissipation of information from the environment to the fish. Therefore, we examined the expression profiles of a suite of genes encoding olfactory receptors and other olfactory-related genes in the olfactory rosettes of different life stages in two anadromous and one non-anadromous wild Atlantic salmon populations from Newfoundland, Canada. We identified seven differentially expressed OlfC genes in juvenile anadromous salmon compared to returning adults in both populations of anadromous Atlantic salmon. The salmon from the Campbellton River had an additional 10 genes that were differentially expressed in juveniles compared to returning adults. There was no statistically significant difference in gene expression of any of the genes in the non-anadromous population (P < 0.01). The function of the OlfC gene products is not clear, but they are predicted to be amino acid receptors. Other studies have suggested that salmon use amino acids for imprinting and homing. This study, the first to examine the expression of olfactory-related genes in wild North American Atlantic salmon, has identified seven OlfC genes that may be involved in the imprinting and homeward migration of anadromous Atlantic salmon.  相似文献   

15.
Synopsis Seasonal changes in hypoosmoregulatory ability were compared in landlocked and anadromous strains of Arctic charr and Atlantic salmon. Seawater adaptability was assessed using periodic 48 h seawater challenge tests with 25. seawater. The landlocked strains of Arctic charr, two from northern Sweden and one from Southern Norway, displayed similar seasonal changes in seawater adaptability as the anadromous strain. Seawater tolerance increased during spring and remained high until the end of July — early August after which it declined. The two strains of Atlantic salmon displayed different seasonal patterns in hypoosmoregulatory ability. The anadromous strain showed a pronounced seasonal pattern with maximal seawater adaptability in early June. In contrast, seawater tolerance in the landlocked strain improved steadily during spring and remained high until late autumn. During the period of enhanced seawater tolerance, hypoosmoregulatory ability increased significantly with body size in both Arctic charr and anadromous Atlantic salmon. The minimum size at which fish were able to regulate plasma sodium following seawater transfer at a level comparable to freshwater levels (<170 mmol I–1) differed significantly between anadromous Atlantic salmon (ca. 14 cm) and Arctic charr (ca. 22 cm). The results show that seasonal changes in hypoosmoregulatory ability are present in both Atlantic salmon and Arctic charr, and that these physiological traits are retained in the corresponding landlocked strains. However, the seasonal pattern of seawater adaptability as well as the minimum size at which seawater tolerance occurs differs between the two species.  相似文献   

16.
How females allocate resources to each offspring and how they allocate the sex of their offspring are two powerful potential avenues by which mothers can affect offspring fitness. Previous research has focussed extensively on mean offspring size, with much less attention given to variance in offspring size. Here we focussed on variation in offspring size in black ratsnakes, Elaphe obsoleta . We collected and hatched 105 clutches (1283 eggs) over 9 years. We predicted that females should lay larger eggs, or more variable eggs, when the environment is less predictable. We also predicted that females laying early or laying larger eggs should produce mostly sons because adult males are larger than adult female ratsnakes. The largest hatchling was more than twice the length and almost four times the mass of the smallest hatchling. Variation in offspring size was itself highly variable, with CVs in offspring mass among clutches ranging from 1% to 25%. With one exception, the variables we expected should influence variation in offspring size had little effect. We found that clutch size increased with maternal size and that egg size decreased with clutch size, but we found no evidence that variance in egg size among clutches increased as the season progressed or that females increased the mean size of their offspring the later in the season they laid their eggs. Females in better condition after they finish laying their eggs did produce larger eggs. There was no relationship between within-clutch variation in egg size and laying date or mean egg size. Finally, sex ratio did not vary with mean egg size or hatching date. Given evidence that offspring size in snakes affects survival, selection should reduce variation in offspring size unless that variance enhances maternal fitness and yet we found little support for hypothesized advantages of varying offspring size.  相似文献   

17.
Trade-off between egg mass and egg number in brown trout   总被引:2,自引:0,他引:2  
Individual egg mass and fecundity increased with somatic mass in first time and repeat spawning wild anadromous and freshwater resident brown trout Salmo trutta . The egg mass was larger for similar-sized trout in south (58° N) than mid Norway (63° N), whereas fecundity was higher in mid- than in south Norway, making total gonadal investment similar in the two areas. Repeat spawners had heavier eggs than similar-sized first time spawners. The egg mass of residents was c. 10% larger than that of similar-sized first time spawning anadromous trout. Common garden experiments with offspring of wild anadromous trout showed no significant correlation between egg and somatic mass in first time spawners in two of the three populations studied. In the third population, a slight positive correlation was found. Similar results were found for repeat spawners. In the three populations, fecundity increased significantly with somatic mass in both first time and repeat spawners. Wild and hatchery-reared trout showed negative correlation between egg mass and fecundity when the effect of body size was excluded, indicating a trade-off between the two parameters. In wild trout, this was caused by variation among populations, whereas in hatchery fish, within population variation was observed in egg mass over fecundity. Furthermore, the egg mass of first time and repeat spawners were positively correlated, when adjusted for fish size. Size-specific gonadal investment was significantly higher in wild anadromous than resident trout. There was no significant difference in gonadal investment between first time and repeat spawners in wild anadromous trout. However, in the hatchery-reared trout, gonadal investment was significantly higher at repeat than first time maturation. The hatchery trout did not spawn naturally, but were artificially stripped. Among populations, a part of the variation in egg mass and fecundity is phenotypically plastic, a part appears genetically determined.  相似文献   

18.
The current paradigm of fish community distribution is one of a downstream increase in species richness by addition, but this concept is based on a small number of streams from the mid-west and southern United States, which are dominated by cyprinids. Further, the measure of species richness traditionally used, without including evenness, may not be providing an accurate reflection of the fish community. We hypothesize that in streams dominated by anadromous salmonids, fish community diversity will be affected by the presence of the anadromous species, and therefore be influenced by those factors affecting the salmonid population. Catamaran Brook, New Brunswick, Canada, provides a long-term data set to evaluate fish community diversity upstream and downstream of an obstruction (North American beaver Castor canadensis dam complex), which affects distribution of Atlantic salmon Salmo salar. The Shannon Weiner diversity index and community evenness were calculated for sample sites distributed throughout the brook and over 15 years. Fish community diversity was greatest upstream of the beaver dams and in the absence of Atlantic salmon. The salmon appear to depress the evenness of the community but do not affect species richness. The community upstream of the beaver dams changes due to replacement of slimy sculpin Cottus cognatus by salmon, rather than addition, when access is provided. Within Catamaran Brook, location of beaver dams and autumn streamflow interact to govern adult Atlantic salmon spawner distribution, which then dictates juvenile production and effects on fish community. These communities in an anadromous Atlantic salmon dominated stream do not follow the species richness gradient pattern shown in cyprinid-dominated streams and an alternative model for stream fish community distribution in streams dominated by anadromous salmonids is presented. This alternative model suggests that community distribution may be a function of semipermeable obstructions, streamflow and the distribution of the anadromous species affecting resident stream fish species richness, evenness, biomass and production.  相似文献   

19.
The effect of egg vitamin A (VA) status and egg incubation temperature on the development of spinal disorders was investigated in Atlantic salmon Salmo salar fry. Atlantic salmon eggs were sorted into two groups with high VA (3·3 ± 0·1 μg retinol g−1 dry mass) and low VA (2·2 ± 0·3 μg retinol g−1 dry mass) status before fertilization and incubated at high (14° C) or low (8° C) temperature from 133 day degrees until the onset of feeding. High egg incubation temperatures increased the concentration of retinol in the eggs: the high VA and high temperature group displayed a significantly higher retinol concentration than the high VA and low temperature group ( P  = 0·001). After hatching, all experimental groups increased their retinol concentration. The source of the increased retinol levels was probably retinal, although astaxanthin may also be a VA precursor after hatching. Atlantic salmon fry incubated at high temperatures had increased amounts of notochord tissue. When measuring morphogenic activity in the notochord using the expression of sonic hedgehog ( shh , mRNA), however, no significant difference was found between the experimental groups. No clear effect of VA status or incubation temperature could be found on the formation of the early vertebral column although Atlantic salmon fry incubated at low temperatures had less regular constrictions of the prospective vertebral column than fry incubated at high temperatures.  相似文献   

20.
Swimming ability of wild brook trout Salvelinus fontinalis , brown trout Salmo trutta , anadromous Atlantic salmon Salmo salar , and landlocked Atlantic salmon was examined using fixed and increasing velocity tests. Although brook trout and salmon parr were collected from the same site, brook trout were found generally in slow-moving pools whereas salmon were more common in faster riffle areas. Salmon parr could hold station indefinitely in currents in which brook trout could only maintain themselves briefly. Therefore, selection of fast-water areas by salmon parr may impose a velocity barrier to sympatric juvenile brook trout, reducing competition between the species. Performance comparisons also indicate that anadromous Atlantic salmon possess slightly greater sustained ability than landlocked salmon, possibly due to altered selective pressure associated with their different life histories. Finally, fishways and culverts in Newfoundland can now be designed using models generated from performance data collected from native salmonid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号