首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of exogenous ATP and its analogs on heart function was studied in 14–100-day-old rats. Extracellular purines had a positive chronotropic effect on the heart. Intravenous administration of exogenous ATP and its stable analogs induced a dose-dependent increase in heart rate depending on animal age. The analysis of isometric contraction of myocardial strips demonstrated a dose-dependent positive inotropic effect of ATP. The family and subtype of the P2 receptors realizing the positive chronotropic and inotropic effects were identified using selective agonists and blockers. P2X receptors demonstrated the highest sensitivity during early postnatal ontogeny. The age-related pattern of the receptor response to exogenous purines indicated the heterochronic maturation of P2X and P2Y receptors in the myocardium.  相似文献   

2.
Adrenergic receptor agonists are known to attenuate the proliferative response of human lymphocytes after activation; however, their mechanism of action is unknown. Since expression of interleukin 2 (IL-2) receptors is a prerequisite for proliferation, the effect of beta-adrenergic receptor agonists on lymphocyte IL-2 receptors was studied on both mitogen-stimulated lymphocytes and IL-2-dependent T lymphocyte cell lines. In both cell types the beta-adrenergic receptor agonist isoproterenol blocked the expression of IL-2 receptors, as determined with the IL-2 receptor anti-TAC antibody. To determine the effect of beta-adrenergic agonists on expression of the high affinity IL-2 receptors, [125I]IL-2 binding studies were performed at concentrations selective for high affinity sites. No significant effect of beta-adrenergic agonists on high affinity IL-2 receptor sites could be detected. The data demonstrate that beta-adrenergic receptor agonists down-regulate IL-2 receptors primarily affecting low affinity sites.  相似文献   

3.
This study was designed to investigate the importance of beta 2 receptor mediated hypotension in the pathogenesis of myocardial injury. The effect of isoproterenol and the putative beta 2 agonist albuterol on arterial blood pressure, heart rate, the myocardial content of ATP and cAMP, and the serum content of MB-CPK was examined in conscious rats. Isoproterenol (5.25 mg/kg, s.c.) and albuterol (45 mg/kg, s.c.) lowered blood pressure and elevated heart rate to the same extent. Also, both agonists increased the myocardial content of cAMP, decreased the myocardial content of ATP, and elevated serum MB-CPK. The beta 1 antagonist practolol, but not the ganglionic blocking agent chlorisondamine, attenuated the elevation in heart rate to albuterol without reducing its effect on blood pressure. Practolol, but not chlorisondamine, abolished the effects of albuterol on cAMP, ATP, and MB-CPK. These data suggest that the myocardial injury which is associated with an increased heart rate and changes in cAMP, ATP, and MB-CPK following the administration of albuterol is not the result of beta 2-mediated hypotension, but is due to stimulation of myocardial beta 1 receptors.  相似文献   

4.
Studies of stress-induced cardiac hypertrophy suggest that myocardial mass is regulated by the circulating level of epinephrine. The trophic effect is mediated by cardiac beta-adrenergic receptors, and in the murine, rat, and dog heart, specifically by beta2-adrenergic receptors. The well-characterized functional effects of catecholamines on heart have obscured their role as myocardial trophic hormones. Therefore, we compared the effect of beta-adrenergic receptor stimulation on the myocardial mass of both a working innervated heart and an essentially nonworking denervated heterotopically transplanted heart in the same rat; in this model, the neural and stretch parameters are nonoperational in the transplanted heart. Ornithine decarboxylase (ODC), an enzyme elevated in a dose-dependent manner in heart by isoproterenol, was assayed in both hearts to determine the relationship between ODC activity and myocardial mass in response to isoproterenol administration in workin, innervated heart compared to denervated, nonworking heart. In both recipient and donor heart, the myocardial mass paralleled the ability of an isoproterenol bolus to stimulate ODC in the respective heart. However, beta-adrenergic receptor activity in the donor heart was decreased 5 days after transplantation as assessed by the differential ability of a single dose of isoproterenol to stimulate ODC activity. Beta-receptor coupling to ODC activity in the donor heart exceeded that of the recipient heart at 10 days posttransplantation suggesting a time-dependent elevation of beta-adrenergic receptor activity in donor heart. At all times, alterations in myocardial mass paralleled beta-adrenoceptor activity as assessed by the ability of isoproterenol administration to elevate ODC activity. The results support the concept that myocardial mass is regulated by the level of circulating hormones, particularly epinephrine.  相似文献   

5.
In adult animals, beta-adrenergic receptors are involved in the regulation of myocardial contractility and heart rate. Their properties in the fetal and early neonatal period have not been adequately investigated. We have directly characterized beta-adrenergic receptors in rabbit fetal and neonatal myocardial membranes by a radioligand binding assay utilizing 125I-hydroxybenzylpindolol (I-HYP), a potent, non-specific, beta-adrenergic antagonist, I-HYP binding sites were detected as early as the 21st day of gestation (term 31 days). The binding was rapid, saturable and reversible. The dissociation constant, KD, as determined by Scatchard plots, ranged from 30 pM to 50 pM. There was a progressive increase in the density of the receptor sites with advancing gestation. Competition studies with beta-agonists and antagonists showed that the order of potency in inhibiting I-HYP binding was consistent with a beta 1-subtype of beta-adrenergic receptors. We conclude that the progressive increase in density of beta-adrenergic receptors in rabbit fetal myocardium parallels similar maturational processes occurring in other tissues with advancing gestation. It may also account for the reported developmental changes in fetal myocardial contractility.  相似文献   

6.
Adrenergic receptor agonists and antagonists were employed to establish (a) which receptor subtypes mediate the cyclic AMP response to norepinephrine in hypothalamic and preoptic area slices from gonadectomized female rats and (b) which receptor subtypes might be modulated by the steroid hormone estradiol. Slice cyclic AMP levels were elevated by the beta receptor agonist isoproterenol, but not by alpha 1 (phenylephrine, methoxamine) or alpha 2 (clonidine) agonists. However, the alpha agonist phenylephrine potentiated the effect of the beta agonist isoproterenol on slice cyclic AMP accumulation. In slices from rats given no hormone treatment, the beta antagonist propranolol inhibited norepinephrine-stimulated cyclic AMP production, while the alpha 1 antagonist prazosin was without effect. In contrast, the cyclic AMP response to norepinephrine in slices from estradiol-treated rats was blocked more effectively by prazosin than by propranolol. Estradiol treatment also attenuated the production of cyclic AMP by the beta agonist isoproterenol. The data suggest (a) that norepinephrine induction of cyclic AMP accumulation in hypothalamic and preoptic area slices is mediated by beta receptors and potentiated by alpha receptor activation and (b) that estradiol depresses beta and increases alpha 1 receptor function in slices from brain regions associated with reproductive physiology.  相似文献   

7.
The influence of beta-casomorphin-5 on the beta-adrenoceptor complex in guinea pig heart membranes was studied by means of binding studies, G-protein investigations and isolated heart preparations. In nanomolar concentrations beta-CM-5 induced an increase in receptor affinity towards the agonist isoproterenol whereas the antagonist affinity was reduced. The isoproterenol-stimulated increase in cardiac contractility, moreover, is reduced by 10 nM beta-CM-5. Furthermore, beta-CM-5 was found to inhibit the isoproterenol-induced GDP/GTP exchange as well as the [35S]GTP[S] binding to guinea pig heart membranes, indicating an involvement of G-proteins. These findings suggest that low concentrations of beta-CM-5 modulate the functional properties of the myocardial beta-adrenoceptor-G-protein complex, presumably resulting in its desensitization. The observed effects of beta-CM-5 are not prevented by naloxone and, therefore, are nonopioid in nature.  相似文献   

8.

Adenosine, a purine nucleoside, is present in all cells in tightly regulated concentrations. It has many different physiological effects in the whole body and in the heart. Adenosine activates four G protein-coupled receptors A1, A2a, A2b, and A3. Activation of myocardial A1 receptors has been shown to inhibit a variety of myocardial pathologies associated with ischemia and reperfusion injury, including stunning, arrhythmogenesis, coronary and ventricular dysfunction, acute myocardial infarction, apoptosis, and chronic heart failure, implying several options for new cardiovascular therapies for diseases, like angina pectoris, control of cardiac rhythm, ischemic injury during an acute coronary syndrome, or heart failure. However, the main issue of using full A1 receptor agonists in such indications is the broad physiologic spectrum of cardiac and extracardiac effects. Desired A1 receptor-mediated protective and regenerative cardiovascular effects might be counter-regulated by unintended side effects when considering full A1 receptor agonists. These effects can be overcome by partial A1 agonists. Partial A1 agonists can be used to trigger only some of the physiological responses of receptor activation depending on endogenous adenosine levels and on receptor reserve in different tissues. CV-Therapeutics reported the identification of a partial A1 receptor agonist CVT-3619, and recently, another partial A1 receptor agonist VCP28 was published. Both compounds are adenosine derivatives. Adenosine-like A1 receptor agonists often have the drawback of a short half-life and low bioavailability, making them not suitable for chronic oral therapy. We identified the first non-adenosine-like partial A1 receptor agonist(s) with pharmacokinetics optimal for oral once daily treatment and characterized the qualities of the partial character of the A1 receptor agonist(s) in preclinical and clinical studies.

  相似文献   

9.
The effects of the muscarinic cholinergic agonist methacholine on affinity of beta-adrenergic receptors for isoproterenol and on isoproterenol-induced stimulation of adenylate cyclase activity were assessed in canine myocardium. GTP and guanyl-5'-yl imidoiphosphate both decreased the affinity of beta-adrenergic receptors for isoproterenol without altering the affinity of these receptors for propranolol. Methacholine (10 nM to 10 micronM) antagonized the guanine nucleotide-induced reduction in beta-adrenergic receptor affinity for isoproterenol. This effect of methacholine was reversed by atropine. The choline ester had no effect on the affinity of beta-adrenergic receptors for isoproterenol in the absence of guanine nucleotides. Likewise, methacholine had no effect on the affinity of beta-adrenergic receptors for propranolol, either in the presence or absence of guanine nucleotides. Methacholine also attenuated GTP-induced activation of adenylate cyclase or isoproterenol-induced activation of the enzyme in the presence of GTP. The effects of methacholine on myocardial adenylate cyclase activity were apparent only in the presence of GTP. These effects were also reversed by atropine. The choline ester had no effect on adenylate cyclase activity in the presence of guanyl-5'-yl imidodiphosphate or NaF. The results of the present study suggest that muscarinic cholinergic agonists can regulate both beta-adrenergic receptors and adenylate cyclase by modulating the effects of GTP.  相似文献   

10.
Herein we show, for the first time, a very marked increase in thyroxine 5'-deiodinase (5'-D) activity in rats injected with norepinephrine (NE) and desmethylimipramine, a drug which inhibits NE uptake by nerve terminals. The response to NE was greater in pineals collected from hypothyroid animals than in glands from euthyroid animals. NE was more effective in stimulating pineal 5'-D than was isoproterenol, suggesting that, in addition to beta-adrenergic receptors, alpha-adrenergic receptors might be involved in the 5'-D activation. However, phenylephrine, an alpha-adrenergic agonist, did not potentiate the effect of isoproterenol on pineal 5'-D activity. The nocturnal increase in pineal 5'-D activity was completely abolished by propranolol, a beta-adrenergic receptor blocker, while prazosin, an alpha-adrenergic receptor blocker, had minimal effect. These results show that the role of alpha-receptors in promoting the NE-mediated rise in rat pineal 5'-D activity is minor in contrast to the role of beta-adrenergic receptors.  相似文献   

11.
It has been found that i. v. administration of cannabinoid receptor (CB) agonists (HU-210, ACPA, anandamide, methanandamide) induced a decrease in the heart rate (HR) in anesthetized rats. Pretreatment with CB1 receptor antagonist SR141716A completely abolished a negative chronotropic effect of CB receptor agonist HU-210. The CB2 receptor antagonist SRI 44528 did not prevent a HU-210-induced decrease in the HR. Pretreatment with the ganglion blocker hexamethonium had no effect on the negative chronotropic action of HU-210. Addition of HU-210 (100 nM) to perfusion solution induced a decrease in the HR, left ventricular development pressure, rate of contractility and relaxation of isolated perfused rate heart without change in end diastolic pressure. These data suggest that cardiac CBI receptor activation induces a decrease in the HR both in vivo and in vitro. An occupancy of the same receptors mediates a negative inotropic effects of cannabinoids.  相似文献   

12.
Since agonists and temperature affect receptor affinity, and since these factors may influence the actual determination of receptor affinity, we assessed the in vitro effects of temperature and isoproterenol on the high and low affinity states of beta-adrenergic receptors in rat membrane preparations. There was a temperature-dependent decrease in beta-adrenergic receptor agonist affinity which was further promoted by the presence of isoproterenol. The decrease in receptor agonist affinity was reflected by a decrease in the number of receptors in the high affinity state. These data suggest that receptor desensitization may occur in membrane preparations in vitro and that the present methodology used to assess agonist affinity in vitro may itself alter the very properties being measured.  相似文献   

13.
Isoproterenol-induced thirst in rats has been attributed to the activation of beta-adrenergic receptors. Since these receptors can be further differentiated pharmacologically into beta1 and beta2 types, experiments were performed using several beta-adrenergic agonists and antagonists to determine the receptor type initiating the isoproterenol-induced thirst. The beta1- and beta2-adrenergic antagonist, d,l-propranolol (1 mg/kg, ip), blocked the increase in water intake usually accompanying acute subcutaneous administration of isoproterenol (25 microgram/kg) to female rats. Since l-propranolol is known to stabilize membranes and to possess anesthetic-like properties, d-propranolol was also used. This isomer has little beta-adrenergic-blocking activity but possesses anesthetic-like activity. Administration of d-propranolol (1 mg/kg, ip) failed to affect the drinking response to acute administration of isoproterenol (25 microgram/kg). Practolol (125 mg/kg), a beta1-adrenergic antagonist with little anesthetic properties, also had no effect on water intake of isoproterenol-treated rats. Butoxamine, a selective beta2-adrenergic antagonist, attenuated the drinking response to isoproterenol. Salbutamol (150 microgram/kg), a beta2-adrenergic agonist, mimicked the effect of isoproterenol on water intake. These results are consistent with the suggestion that beta2-adrenergic receptors mediate the isoproterenol-induced thirst in rats.  相似文献   

14.
A binding assay has been developed to characterize beta-adrenergic receptors on intact L6 muscle cells. The affinity of beta-adrenergic receptors for the radioligand iodohydroxybenzylpindolol (IHYP) was the same in membrane preparations and in intact cells when determined by either equilibrium binding or kinetic analysis. The number of specific IHYP binding sites per cell was approximately the same on intact cells as on membranes. The pharmacological properties of antagonists indicated that the receptors on intact cells were identical to those on membranes. However, the beta-adrenergic receptors on intact cells had a 100-400 fold lower affinity at equilibrium for the agonist isoproterenol than did beta-adrenergic receptors on membranes. This low affinity of the receptor for agonists as measured by inhibition of radioligand binding in intact cells has also been observed in C6 (2) and S49 (3) cells. Our results suggest that beta receptors on intact cells after a 1 minute incubation was similar to the KD value for isoproterenol measured in membranes at equilibrium in the presence of GTP. After 1-2 minutes of exposure to a low concentration of agonist, binding of IHYP was no longer inhibited. These results suggest that agonists rapidly convert the beta receptors on intact cells to a state which has a low affinity for agonists. The affinity of the receptor for antagonists did not change during the incubation.  相似文献   

15.
Chronic administration of d, l isoproterenol, 0.2 – 5 mg/kg/day, for 14–21 days in the male rat produced marked increases in dry ventricle weight (21.1 – 43.6%; p < 0.001). In comparison, an α-adrenergic agonist, phenylephrine (7.5 mg/kg/day) decreased ventricle weight (?15.3%; p < 0.025). Also, isoproterenol injection at 5 mg/kg/day decreased cardiac actomyosin ATPase activity by 23.3% (p < 0.0025) while phenylephrine, administered as above, did not influence ATPase activity. The effect of isoproterenol on heart weight was completely blocked by the β1-adrenergic antagonist practolol (5 mg/kg/day). Albuterol, a relatively specific β2-adrenergic agonist was less potent than isoproterenol in producing cardiac hypertrophy. l-Epinephrine injection, 0.8 mg/kg/day for 14 days, had no effect on heart weight. However, l-epinephrine produced cardiac hypertrophy (22.4% p < 0.001) when the animals were preinjected with the α-adrenergic antagonist, phenoxybenzamine (5 mg/kg/day). The data indicate that cardiac hypertrophy can be produced by stimulation of the β1-adrenergic receptors of the heart; apparently, stimulation of α-adrenergic receptors opposes β-adrenergic hypertrophic effects.  相似文献   

16.
腺苷及其衍生物的心血管效应和作用机制   总被引:1,自引:0,他引:1  
在实验中观察了腺苷及其衍生物的心血管效应和作用机制,结果表明:(1)腺苷和2-氯腺苷先引起由颈动脉体化学感受器内的A2受体所中介的血压短暂升高,随之为心血管系统A1和A2受体中介的持久而明显的血压降低;(2)腺苷受体激动剂环戊腺苷抑制窦房结起搏细胞的电生理活动;(3)环戊腺苷减弱异丙肾上腺素诱发的早发和迟发性后除极及触发电活动;(4)内源性腺苷参与无氧所致的心率减慢;(5)预缺血时腺苷受体的激活及  相似文献   

17.
The mammalian myocardium expresses four adenosine receptor (AR) subtypes: A(1)AR, A(2a)AR, A(2b)AR, and A(3)AR. The A(1)AR is well known for its profound antiadrenergic effects, but the roles of other AR subtypes in modulating contractility remain inconclusive. Thus, the objective of this study was to determine the direct and indirect effects of A(2a)AR and A(2b)AR on cardiac contractility. Experiments were conducted in paced, constant pressure-perfused isolated hearts from wild-type (WT), A(2a)AR knockout (KO), and A(2b)AR KO mice. The A(2a)AR agonist CGS-21680 did not alter basal contractility or β-adrenergic receptor agonist isoproterenol (Iso)-mediated positive inotropic responses, and Iso-induced effects were unaltered in A(2a)AR KO hearts. However, A(2a)AR gene ablation resulted in a potentiation of the antiadrenergic effects mediated by the A(1)AR agonist 2-chloro-N-cyclopentyladenosine. The nonselective AR agonist 5'-N-ethylcarboxamido adenosine and the selective A(2b)AR agonist BAY 60-6583 induced coronary flow-independent increases in contractility, but BAY 60-6583 did not alter Iso-induced contractile responses. The A(1)AR antiadrenergic effect was not potentiated in A(2b)AR KO hearts. The expression of all four AR subtypes in the heart and ventricular myocytes was confirmed using real-time quantitative PCR. Taken together, these results indicate that A(2a)AR does not increase cardiac contractility directly but indirectly alters contractility by modulating the A(1)AR antiadrenergic effect, whereas A(2b)AR exerts direct contractile effects but does not alter β-adrenergic or A(1)AR antiadrenergic effects. These results indicate that multiple ARs differentially modulate cardiac function.  相似文献   

18.
19.
Muscarinic agonists elicit contraction through M3 receptors in most isolated preparations of gastrointestinal smooth muscle, and not surprisingly, several investigators have identified M3 receptors in smooth muscle using biochemical, immunological and molecular biological methods. However, these studies have also shown that the M2 receptor outnumbers the M3 by a factor of about four in most instances. In smooth muscle, M3 receptors mediate phosphoinositide hydrolysis and Ca2+ mobilization, whereas M2 receptors mediate an inhibition of cAMP accumulation. The inhibitory effect of the M2 receptor on cAMP levels suggests an indirect role for this receptor; namely, an inhibition of the relaxant action of cAMP-stimulating agents. Such a function has been rigorously demonstrated in an experimental paradigm where gastrointestinal smooth muscle is first incubated with 4-DAMP mustard to inactivate M3 receptors during a Treatment Phase, and subsequently, the contractile activity of muscarinic agonists is characterized during a Test Phase in the presence of histamine and a relaxant agent. When present together, histamine and the relaxant agent (e.g., isoproterenol or forskolin) have no net contractile effect because their actions oppose one another. However, under these conditions, muscarinic agonists elicit a highly potent contractile response through the M2 receptor, presumably by inhibiting the relaxant action of isoproterenol or forskolin on histamine-induced contractions. This contractile response is pertussis toxin-sensitive, unlike the standard contractile response to muscarinic agonists, which is pertussis toxin-insensitive. When measured under standard conditions (i.e., in the absence of histamine and without 4-DAMP mustard-treatment), the contractile response to muscarinic agonists is moderately sensitive to pertussis toxin if isoproterenol or forskolin is present. Also, pertussis toxin-treatment enhances the relaxant action of isoproterenol in the field-stimulated guinea pig ileum. These results demonstrate that endogenous acetylcholine can activate M2 receptors to inhibit the relaxant effects of beta-adrenoceptor activation on M3 receptor-mediated contractions. An operational model for the interaction between M2 and M3 receptors shows that competitive antagonism of the interactive response resembles an M3 profile under most conditions, making it difficult to detect the contribution of the M2 receptor.  相似文献   

20.
The effects of methoxamine, a selective alpha1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of alpha1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of alpha1-adrenoreceptors significantly increased the L-type calcium current (I(Ca(L))) but had no effect on the T-type calcium current (I(Ca(T))), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective alpha1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in I(Ca(L)), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional alpha1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of alpha1-receptor agonists like methoxamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号