首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this study, we have examined the properties of synaptic transmission between dorsal root ganglion (DRG) and dorsal horn (DH) neurons, placed in co-culture. We also examined the effect of the anti-hyperalgesic gabapentinoid drug pregabalin (PGB) at this pharmacologically relevant synapse. The main method used was electrophysiological recording of excitatory post synaptic currents (EPSCs) in DH neurons. Synaptic transmission between DRG and DH neurons was stimulated by capsaicin, which activates transient receptor potential vanilloid-1 (TRPV1) receptors on small diameter DRG neurons. Capsaicin (1 μM) application increased the frequency of EPSCs recorded in DH neurons in DRG-DH co-cultures, by about 3-fold, but had no effect on other measured properties of the EPSCs. There was also no effect of capsaicin in the absence of co-cultured DRGs. Application of PGB (100 μM) for 40–48 h caused a reduction in the capsaicin-induced increase in EPSC frequency by 57%. In contrast, brief preincubation of PGB had no significant effect on the capsaicin-induced increase in EPSC frequency. In conclusion, this study shows that PGB applied for 40–48 h, but not acute application inhibits excitatory synaptic transmission at DRG-DH synapses, in response to nociceptive stimulation, most likely by a presynaptic effect on neurotransmitter release from DRG presynaptic terminals.  相似文献   

2.
In this study, we have examined the properties of synaptic transmission between dorsal root ganglion (DRG) and dorsal horn (DH) neurons, placed in co-culture. We also examined the effect of the anti-hyperalgesic gabapentinoid drug pregabalin (PGB) at this pharmacologically relevant synapse. The main method used was electrophysiological recording of excitatory post synaptic currents (EPSCs) in DH neurons. Synaptic transmission between DRG and DH neurons was stimulated by capsaicin, which activates transient receptor potential vanilloid-1 (TRPV1) receptors on small diameter DRG neurons. Capsaicin (1 μM) application increased the frequency of EPSCs recorded in DH neurons in DRG-DH co-cultures, by about 3-fold, but had no effect on other measured properties of the EPSCs. There was also no effect of capsaicin in the absence of co-cultured DRGs. Application of PGB (100 μM) for 40-48 h caused a reduction in the capsaicin-induced increase in EPSC frequency by 57%. In contrast, brief preincubation of PGB had no significant effect on the capsaicin-induced increase in EPSC frequency. In conclusion, this study shows that PGB applied for 40-48 h, but not acute application inhibits excitatory synaptic transmission at DRG-DH synapses, in response to nociceptive stimulation, most likely by a presynaptic effect on neurotransmitter release from DRG presynaptic terminals.  相似文献   

3.
TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS). TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST) afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs) under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 μs) that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM) blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5) direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.  相似文献   

4.
NMDA receptors (NMDARs), fundamental to learning and memory and implicated in certain neurological disorders, are heterotetrameric complexes composed of two NR1 and two NR2 subunits. The function of synaptic NMDARs in postnatal principal forebrain neurons is typically attributed to diheteromeric NR1/NR2A and NR1/NR2B receptors, despite compelling evidence for triheteromeric NR1/NR2A/NR2B receptors. In synapses, the properties of triheteromeric NMDARs could thus far not be distinguished from those of mixtures of diheteromeric NMDARs. To find a signature of NR1/NR2A/NR2B receptors, we have employed two gene-targeted mouse lines, expressing either NR1/NR2A or NR1/NR2B receptors without NR1/NR2A/NR2B receptors, and compared their synaptic properties with those of wild type. In acute hippocampal slices of mutants older than 4 weeks we found a distinct voltage dependence of NMDA R-mediated excitatory postsynaptic current (NMDA EPSC) decay time for the two diheteromeric NMDARs. In wild-type mice, NMDA EPSCs unveiled the NR1/NR2A characteristic for this voltage-dependent deactivation exclusively, indicating that the contribution of NR1/NR2B receptors to evoked NMDA EPSCs is negligible in adult CA3-to-CA1 synapses. The presence of NR1/NR2A/NR2B receptors was obvious from properties that could not be explained by a mixture of diheteromeric NR1/NR2A and NR1/NR2B receptors or by the presence of NR1/NR2A receptors alone. The decay time for NMDA EPSCs in wild type was slower than that for NR1/NR2A receptors, and the sensitivity of NMDA EPSCs to NR2B-directed NMDAR antagonists was 50%. Thus, NR2B is prominent in adult hippocampal synapses as an integral part of NR1/NR2A/NR2B receptors.  相似文献   

5.
Liu G  Choi S  Tsien RW 《Neuron》1999,22(2):395-409
To understand the elementary unit of synaptic communication between CNS neurons, one must know what causes the variability of quantal postsynaptic currents and whether unitary packets of transmitter saturate postsynaptic receptors. We studied single excitatory synapses between hippocampal neurons in culture. Focal glutamate application at individual postsynaptic sites evoked currents (I(glu)) with little variability compared with quantal excitatory postsynaptic currents (EPSCs). The maximal I(glu) was >2-fold larger than the median EPSC. Thus, variations in [glu]cleft are the main source of variability in EPSC size, and glutamate receptors are generally far from saturation during quantal transmission. This conclusion was verified by molecular antagonism experiments in hippocampal cultures and slices. The general lack of glutamate receptor saturation leaves room for increases in [glu]cleft as a mechanism for synaptic plasticity.  相似文献   

6.
Adenosine has been implicated as a modulator of retinohypothalamic neurotransmission in the suprachiasmatic nucleus (SCN), the seat of the light-entrainable circadian clock in mammals. Intracellular recordings were made from SCN neurons in slices of hamster hypothalamus using the in situ whole-cell patch clamp method. A monosynaptic, glutamatergic, excitatory postsynaptic current (EPSC) was evoked by stimulation of the optic nerve. The EPSC was blocked by bath application of the adenosine A(1) receptor agonist cyclohexyladenosine (CHA) in a dose-dependent manner with a half-maximal concentration of 1.7 microM. The block of EPSC amplitude by CHA was antagonized by concurrent application of the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The adenosine A(2A) receptor agonist CGS21680 was ineffective in attenuating the EPSC at concentrations up to 50 microM. Trains of four consecutive stimuli at 25 ms intervals usually depressed the EPSC amplitude. However, after application of CHA, consecutive responses displayed facilitation of EPSC amplitude. The induction of facilitation by CHA suggested a presynaptic mechanism of action. After application of CHA, the frequency of spontaneous EPSCs declined substantially, while their amplitude distribution was unchanged or slightly reduced, again suggesting a mainly presynaptic site of action for CHA. Application of glutamate by brief pressure ejection evoked a long-lasting inward current that was unaffected by CHA at concentrations sufficient to reduce the evoked EPSC amplitude substantially (1 to 5 microM), suggesting that postsynaptic glutamate receptor-gated currents were unaffected by the drug. Taken together, these observations indicate that CHA inhibits optic nerve-evoked EPSCs in SCN neurons by a predominantly presynaptic mechanism.  相似文献   

7.
TRPV1 receptors have classically been defined as heat-sensitive, ligand-gated, nonselective cation channels that integrate nociceptive stimuli in sensory neurons. TRPV1 receptors have also been identified in the brain, but their physiological role is poorly understood. Here we report that TRPV1 channel activation is necessary and sufficient to trigger long-term synaptic depression (LTD). Excitatory synapses onto hippocampal interneurons were depressed by either capsaicin, a potent TRPV1 channel activator, or the endogenously released eicosanoid, 12-(S)-HPETE, whereas neighboring excitatory synapses onto CA1 pyramidal cells were unaffected. TRPV1 receptor antagonists also prevented interneuron LTD. In brain slices from TRPV1-/- mice, LTD was absent, and neither capsaicin nor 12-(S)-HPETE elicited synaptic depression. Our results suggest that, in the hippocampus, TRPV1 receptor activation selectively modifies synapses onto interneurons. Like other forms of hippocampal synaptic plasticity, TRPV1-mediated LTD may have a role in long-term changes in physiological and pathological circuit behavior during learning and epileptic activity.  相似文献   

8.
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.  相似文献   

9.
Phencyclidine (PCP) blocks glutamate-activated postsynaptic currents   总被引:1,自引:0,他引:1  
Phencyclidine (PCP) was tested on the metathoracic tibialis muscles of Locusta migratoria. In physiological solution, the peak amplitude of the excitatory postsynaptic currents (EPSCs) evoked by nerve stimulation was linearly related to membrane potential between -50 and -150 mV. The decay time constant of the EPSC (tau EPSC) was exponentially dependent on voltage and decreased with hyperpolarization. The membrane potential change required to produce an e-fold change in tau EPSC was 315 mV. PCP (5-40 microM) produced a concentration-dependent depression of both EPSC peak amplitude and tau EPSC. A slight nonlinearity in the current-voltage relationship could be discerned at high concentrations of PCP. The shortening of the decay time constant of EPSC (tau EPSC) occurred without significant change in the voltage sensitivity observed under control conditions. Under all experimental conditions, the decay of the EPSCs remained a single exponential of time. Fluctuation analysis indicated that 5 microM PCP shortens the lifetime of the glutamate-activated channels by 25.7 +/- 3%. PCP (10-80 microM) did not induced desensitization of the glutamate receptors. These results suggest that PCP interacts with the open conformation of ion channels activated by the glutamate receptor.  相似文献   

10.
Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD) and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.  相似文献   

11.
We recently reported that the activation of cholecystokinin-2 receptors depress evoked excitatory postsynaptic currents (EPSCs) in nucleus accumbens (NAc) indirectly through gamma-aminobutyric acid (GABA) acting on gamma-aminobutyric acid-B (GABA(B)) receptors. Here, we determined the second messenger system that couples cholecystokinin-2 receptors to the observed synaptic depression. Using in vitro forebrain slices of rats and whole-cell patch recording, we tested the hypothesis that cholecystokinin-2 receptors are coupled to cAMP and protein kinase A signaling pathway. Cholecystokinin-8S induced inward currents and depressed evoked EPSCs. Forskolin, an activator of adenylyl cyclase and rolipram that is an inhibitor of phosphodiesterase type IV, independently increased EPSC amplitude and blocked the inward current and synaptic depression induced by cholecystokinin-8S. Furthermore, the membrane-permeable cAMP analog, 8-bromo-cAMP, blocked the cholecystokinin-8S effects. H89, a protein kinase A inhibitor, also blocked cholecystokinin-8S effects. However, depression of the evoked EPSC by baclofen, a GABA(B) receptor agonist, was not blocked by H89 or forskolin. These findings indicate that cholecystokinin-2, but not GABA(B), receptors are coupled to the adenylyl cyclase-cAMP-protein kinase A signaling pathway in the NAc to induce inward currents and cause synaptic depression.  相似文献   

12.
Xie G  Ye JH 《PloS one》2012,7(5):e36716
Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D(1) receptors (D(1)Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D(1)Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D(1)R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D(1)Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol.  相似文献   

13.
We have recently shown that the transient receptor potential vanilloid type 1 (TRPV1), a non-selective cation channel in the peripheral and central nervous system, is localized at postsynaptic sites of the excitatory perforant path synapses in the hippocampal dentate molecular layer (ML). In the present work, we have studied the distribution of TRPV1 at inhibitory synapses in the ML. With this aim, a preembedding immunogold method for high resolution electron microscopy was applied to mouse hippocampus. About 30% of the inhibitory synapses in the ML are TRPV1 immunopositive, which is mostly localized perisynaptically (∼60% of total immunoparticles) at postsynaptic dendritic membranes receiving symmetric synapses in the inner 1/3 of the layer. This TRPV1 pattern distribution is not observed in the ML of TRPV1 knock-out mice. These findings extend the knowledge of the subcellular localization of TRPV1 to inhibitory synapses of the dentate molecular layer where the channel, in addition to excitatory synapses, is present.  相似文献   

14.
Serotonin (5-HT) and 5-HT receptor agonists can modify the response of the mammalian suprachiasmatic nucleus (SCN) to light. It remains uncertain which 5-HT receptor subtypes mediate these effects. The effects of 5-HT receptor activation on optic nerve-mediated input to SCN neurons were examined using whole-cell patch-clamp recordings in horizontal slices of ventral hypothalamus from the male mouse. The hypothesis that 5-HT reduces the effect of retinohypothalamic tract (RHT) input to the SCN by acting at 5-HT1B receptors was tested first. As previously described in the hamster, a mixed 5-HT(1A/1B) receptor agonist, 1-[3-(trifluoromethyl)phenyl]-piperazine hydrochloride (TFMPP), reduced the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) evoked by selectively stimulating the optic nerve of wild-type mice. The agonist was negligibly effective in a 5-HT1B receptor knockout mouse, suggesting minimal contribution of 5-HT1A receptors to the TFMPP-induced reduction in the amplitude of the optic nerve-evoked EPSC. We next tested the hypothesis that 5-HT also reduces RHT input to the SCN via activation of 5-HT7 receptors. The mixed 5-HT(1A/7) receptor agonist, R(+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT), reduced the evoked EPSC amplitude in both wild-type and 5-HT1B receptor knockout mice. This effect of 8-OH-DPAT was minimally attenuated by the selective 5-HT1A receptor antagonist WAY 100635 but was reversibly and significantly reduced in the presence of ritanserin, a mixed 5-HT(2/7) receptor antagonist. Taken together with the authors' previous ultrastructural studies of 5-HT1B receptors in the mouse SCN, these results indicate that in the mouse, 5-HT reduces RHT input to the SCN by acting at 5-HT1B receptors located on RHT terminals. Moreover, activation of 5-HT7 receptors in the mouse SCN, but not 5-HT1A receptors, also results in a reduction in the amplitude of the optic nerve-evoked EPSC. The findings indicate that 5-HT may modulate RHT glutamatergic input to the SCN through 2 or more 5-HT receptors. The likely mechanism of altered RHT glutamatergic input to SCN neurons is an alteration of photic effects on the SCN circadian oscillator.  相似文献   

15.
Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature post-synaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on pre-synaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of post-synaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory post-synaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities.  相似文献   

16.
Nociceptin/orphanin FQ (N/OFQ) modulates various biological functions, including nociception, via selective stimulation of the N/OFQ peptide receptor (NOP). Here we used the NOP selective antagonist UFP-101 to characterize the receptor involved in the spinal antinociceptive effects of N/OFQ evaluated in the mouse tail withdrawal assay and to investigate the mechanism underlying this action by assessing excitatory postsynaptic currents (EPSC) in laminas I and II of the mouse spinal cord dorsal horn with patch-clamp techniques. Intrathecal (i.t.) injection of N/OFQ in the range of 0.1-10 nmol produced a dose dependent antinociceptive effect, which was prevented by UFP-101, but not by naloxone. In contrast the antinociceptive effect of the mu-opioid peptide receptor agonist endomorphin-1 was blocked by naloxone but not by UFP-101. Moreover, N/OFQ and endomorphin-1 induced a significant antinociceptive effect in wild type mice while in mice knockout for the NOP receptor gene only endomorphin-1 was found to be active. In mouse spinal cord slices 1 microM N/OFQ reduced EPSC to 60+/-4% of control values. This inhibitory effect was reversed in a concentration dependent manner by UFP-101 (pA2 value 6.44). The present results demonstrate that N/OFQ-induced spinal antinociception in vivo and inhibition of spinal excitatory transmission in vitro are mediated by receptors of the NOP type.  相似文献   

17.
Deletion of the synapsin I genes, encoding one of the major groups of proteins on synaptic vesicles, in mice causes late onset epileptic seizures and enhanced experimental temporal lobe epilepsy. However, mice lacking synapsin I maintain normal excitatory synaptic transmission and modulation but for an enhancement of paired-pulse facilitation. To elucidate the cellular basis for epilepsy in mutants, we examined whether the inhibitory synapses in the hippocampus from mutant mice are intact by electrophysiological and morphological means. In the cultured hippocampal synapses from mutant mice, repeated application of a hypertonic solution significantly suppressed the subsequent transmitter release, associated with an accelerated vesicle replenishing time at the inhibitory synapses, compared with the excitatory synapses. In the mutants, morphologically identifiable synaptic vesicles failed to accumulate after application of a hypertonic solution at the inhibitory preterminals but not at the excitatory preterminals. In the CA3 pyramidal cells in hippocampal slices from mutant mice, inhibitory postsynaptic currents evoked by direct electrical stimulation of the interneuron in the striatum oriens were characterized by reduced quantal content compared with those in wild type. We conclude that synapsin I contributes to the anchoring of synaptic vesicles, thereby minimizing transmitter depletion at the inhibitory synapses. This may explain, at least in part, the epileptic seizures occurring in the synapsin I mutant mice.  相似文献   

18.
A review is given of experiments performed in the author's laboratory on slices from the rat visual cortex and hippocampus. The aim was to test the existence of the positive feedback in central synapses according to a mechanism of electrical (ephatic) linking proposed by A. L. Byzow. The hypothesis predicts that, in a subset of central synapses, artificial postsynaptic membrane potential (MP) hyperpolarization should increase the amplitude of the excitatory postsynaptic current (EPSC) and potential (EPSP) not only due to a deviation from the equilibrium potential but also due to increased presynaptic transmitter release. In a part of the experiments, we found changes in several traditional parameters of transmitter release during hyperpolarization: number of response failures, coefficient of variation of response amplitude and quantal content of minimal EPSC/EPSP. The effects were especially prominent for the giant mossy fibre-CA3 synapses. For them, "supralinear" amplitude-voltage relations at hyperpolarized membrane potentials and voltage--dependent paired--pulse facilitation ratios were found. All these "non-classical" effects disappeared when composite, rather than minimal, EPSCs were evoked. These data were consistent with simulation experiments performed on the Byzov's synaptic model with the ephaptic feedback and therefore they strengthen the hypothesis. Independent of their interpretation, the data reveal a novel feedback mechanism. The mechanism provides a possibility for the central postsynaptic neurone to control the efficacy of a subset of synapses via postsynaptic MP modifications. The mechanism can essentially increase the efficacy of large ("perforated") synapses. It explains the significance of the increased number of such synapses following experimental challenges such as leading to induction of the long-term potentiation or to behavioural conditioning.  相似文献   

19.
The relative contribution of kainate receptors to ongoing glutamatergic activity is at present unknown. We report the presence of spontaneous, miniature, and minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) that are mediated solely by kainate receptors (EPSC(kainate)) or by both AMPA and kainate receptors (EPSC(AMPA/kainate)). EPSC(kainate) and EPSC(AMPA/kainate) are selectively enriched in CA1 interneurons and mossy fibers synapses of CA3 pyramidal neurons, respectively. In CA1 interneurons, the decay time constant of EPSC(kainate) (circa 10 ms) is comparable to values obtained in heterologous expression systems. In both hippocampal neurons, the quantal release of glutamate generates kainate receptor-mediated EPSCs that provide as much as half of the total glutamatergic current. Kainate receptors are, therefore, key players of the ongoing glutamatergic transmission in the hippocampus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号