首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear.  相似文献   

3.
We have identified an unusual potential dual Akt/protein kinase B consensus phosphorylation motif in the protein Synip (RxKxRS(97)xS(99)). Surprisingly, serine 97 is not appreciably phosphorylated, whereas serine 99 is only a specific substrate for Akt2 but not Akt1 or Akt3. Although wild-type Synip (WT-Synip) undergoes an insulin-stimulated dissociation from Syntaxin4, the Synip serine 99 to phenylalanine mutant (S99F-Synip) is resistant to Akt2 phosphorylation and fails to display insulin-stimulated Syntaxin4 dissociation. Furthermore, overexpression of WT-Synip in 3T3L1 adipocytes had no effect on insulin-stimulated recruitment of glucose transporter 4 (GLUT4) to the plasma membrane, whereas overexpression of S99F-Synip functioned in a dominant-interfering manner by preventing insulin-stimulated GLUT4 recruitment and plasma membrane fusion. These data demonstrate that insulin activation of Akt2 specifically regulates the docking/fusion step of GLUT4-containing vesicles at the plasma membrane through the regulation of Synip phosphorylation and Synip-Syntaxin4 interaction.  相似文献   

4.
Insulin-regulated aminopeptidase (IRAP, also termed vp165) is known to be localized on the GLUT4-containing vesicles and to be recruited to the plasma membrane after stimulation with insulin. The cytoplasmic region of IRAP contains two dileucine motifs and acidic regions, one of which (amino acid residues 55-82) is reportedly involved in retention of GLUT4-containing vesicles. The region of IRAP fused with glutathione-S-transferase [GST-IRAP(55-82)] was incubated with lysates from 3T3-L1 adipocytes, leading to identification of long-chain, medium-chain, and short-chain acyl-coenzyme A dehydrogenases (ACDs) as the proteins associated with IRAP. The association was nearly abolished by mutation of the dileucine motif of IRAP. Immunoblotting of fractions prepared from sucrose gradient ultracentrifugation and vesicles immunopurified with anti-GLUT4 antibody revealed these ACDs to be localized on GLUT4-containing vesicles. Furthermore, 3-mercaptopropionic acid and hexanoyl-CoA, inhibitors of long-chain and medium-chain ACDs, respectively, induced dissociation of long-chain acyl-coenzyme A dehydrogenase and/or medium-chain acyl-coenzyme A dehydrogenase from IRAP in vitro as well as recruitment of GLUT4 to the plasma membrane and stimulation of glucose transport activity in permeabilized 3T3-L1 adipocytes. These findings suggest that ACDs are localized on GLUT4-containing vesicles via association with IRAP in a manner dependent on its dileucine motif and play a role in retention of GLUT4-containing vesicles to an intracellular compartment.  相似文献   

5.
The trafficking of the insulin-sensitive glucose transporter, GLUT4, is the paradigm of how cells control the movement of membrane proteins through intricate pathways of transport in response to external stimuli, and how, by doing so, regulate their function. The GLUT4 intracellularly sequestered in resting adipocytes and muscle cells becomes exposed on their surface in response to an increase in insulin levels and muscle contraction, where it facilitates glucose uptake. Ceasing of the stimuli is followed by endocytosis of the GLUT4 molecules exposed on the plasma membrane and their recycling to the original stores, where they are retained. This review discusses current understanding of the organelles that host GLUT4 and the motifs that mediate its trafficking.  相似文献   

6.
Pantophysin, a protein related to the neuroendocrine-specific synaptophysin, recently has been identified in non-neuronal tissues. In the present study, Northern blots showed that pantophysin mRNA was abundant in adipose tissue and increased during adipogenesis of 3T3-L1 cells. Immunoblot analysis of subcellular fractions showed pantophysin present exclusively in membrane fractions and relatively evenly distributed in the plasma membrane and internal membrane fractions. Sucrose gradient ultracentrifugation demonstrated that pantophysin and GLUT4 exhibited overlapping distribution profiles. Furthermore, immunopurified GLUT4 vesicles contained pantophysin, and both GLUT4 and pantophysin were depleted from this vesicle population following treatment with insulin. Additionally, a subpopulation of immunopurified pantophysin vesicles contained insulin-responsive GLUT4. Consistent with the interaction of synaptophysin with vesicle-associated membrane protein 2 in neuroendocrine tissues, pantophysin associated with vesicle-associated membrane protein 2 in adipocytes. Furthermore, in [(32)P]orthophosphate-labeled cells, pantophysin was phosphorylated in the basal state. This phosphorylation was unchanged in response to insulin; however, insulin stimulated the phosphorylation of a 77-kDa protein associated with alpha-pantophysin immunoprecipitates. Although the functional role of pantophysin in vesicle trafficking is unclear, its presence on GLUT4 vesicles is consistent with the emerging role of soluble N-ethylmaleimide-sensitive protein receptor (SNARE) factor complex and related proteins in regulated vesicle transport in adipocytes. In addition, pantophysin may provide a marker for the analysis of other vesicles in adipocytes.  相似文献   

7.
Insulin stimulates glucose uptake into adipocytes by mobilizing intracellular membrane vesicles containing GLUT4 proteins to the plasma membrane. Here we applied time-lapse total internal reflection fluorescence microscopy to study moving parameters and characters of exogenously expressed GLUT4 vesicles in basal, insulin and nocodazole treated primary rat adipocytes. Our results showed that microtubules were essential for long-range transport of GLUT4 vesicles but not obligatory for GLUT4 distribution in rat adipocytes. Insulin reduced the mobility of the vesicles, made them tethered/docked to the PM and finally had constitutive exocytosis. Moreover, long-range bi-directional movements of GLUT4 vesicles were visualized for the first time by TIRFM. It is likely that there are interactions between insulin signaling and microtubules, to regulating GLUT4 translocation in rat adipocytes.  相似文献   

8.
We recently developed a procedure for immunoisolating insulin-responsive membrane vesicles that contain the muscle/fat glucose transporter isoform, GLUT 4, from rat adipocytes. Utilizing this methodology, we are analyzing the components of these vesicles to gain an understanding of how they are regulated by insulin. In this report we identify a phosphatidylinositol (PtdIns) 4-kinase as a constituent of glucose transporter vesicles (GTVs). This kinase has the biochemical and immunological properties of a type II PtdIns 4-kinase as classified by Endeman et al. (Endemann, G., Dunn, S. N., and Cantley, L. C. (1987) Biochemistry 26, 6845-6852). A monoclonal antibody, 4C5G, which specifically inhibits the type II PtdIns 4-kinase, suppresses 80% of the GTV-PtdIns 4-kinase activity. In addition, the GTVs-PtdIns 4-kinase is maximally activated by the nonionic detergent Triton X-100, at a concentration of 0.2% and is inhibited by adenosine with a Ki of approximately 20-30 microM. We find that the GTVs do not contain any PtdIns4P 5-kinase or diacylglycerol kinase activities, whereas these activities were detected in the plasma membrane. An analysis of the subcellular distribution of PtdIns 4-kinase activity in the rat adipocyte shows that there are similar levels of activity in GTVs, plasma membranes, and the high and low density microsomal fractions, whereas the mitochondria- and nuclei-containing fractions have less than 5% of the activity seen in other fractions. Low density microsomes were subfractionated by sucrose density gradient centrifugation and PtdIns 4-kinase activity was found to correlate closely with the distribution of membrane protein, indicating that the activity is equally distributed throughout this heterogenous population of membranes. PtdIns 4-kinase activity measured in GTVs, plasma membranes, and low density microsomes, was not affected by prior treatment of the intact adipocytes with 35 nM insulin. We postulate that while the GTV-PtdIns 4-kinase is not regulated by insulin, it may play a role in defining the fusogenic properties necessary to mediate membrane movement between the GTVs, plasma membranes, and microsomes.  相似文献   

9.
Insulin treatment of rat adipocytes increases both cytoplasmic alkalinity and glucose transport activity. Both processes are blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. Isoproterenol pre-treatment reverses the alkalinizing effects of insulin and leads to attenuation of insulin-stimulated glucose transport activity and exposure of GLUT4 to photolabeling reagents at the cell surface. These effects of isoproterenol are mimicked by acid loading and are reversed by cell-alkalinizing conditions. However, neither isoproterenol nor acid loading alters the total level of GLUT4 at the plasma membrane as revealed by Western blotting of plasma membrane fractions or immunodetection of GLUT4 in plasma membrane lawns. GLUT4 is therefore occluded from participation in glucose transport catalysis by a pH-sensitive process. To examine the kinetics of trafficking that lead to these changes in cell surface GLUT4 occlusion, we have utilized a new biotinylated photolabel, GP15. This reagent has a 70-atom spacer between the biotin and the photolabeling diazirine group, and this allows quenching of the surface signal of biotinylated GLUT4 by extracellular avidin. The rates of GLUT4 internalization are only slightly altered by isoproterenol or acidification, mainly due to reduced recycling over long internalization times. By contrast, insulin stimulation of GLUT4 exocytosis is slowed by isoproterenol or acidification pre-treatments. Biphasic time courses are evident, with an initial burst of exposure at the cell surface followed by a slow phase. It is hypothesized that the burst kinetics are a consequence of a two-phase fusion reaction that is rapid in the presence of insulin but slowed by cytosol acidification.  相似文献   

10.
Proton pumps participate in several aspects of endocytic protein trafficking. However, their involvement specifically in the GLUT4 pathway has been a matter of great controversy. Here, we report that incubation of 3T3-L1 adipocytes with specific inhibitors of V-type ATPase, concanamycin A and bafilomycin A1, inhibits insulin-regulated glucose transport and results in accumulation of GLUT4 in heavy, rapidly sedimenting intracellular membranes. Correspondingly, the amount of small responsive GLUT4 vesicles in concanamycin A- and bafilomycin A1-treated cells is decreased. We conclude that these drugs block translocation of GLUT4 in adipose cells by inhibiting formation of small insulin-responsive vesicles on donor intracellular membranes. At the same time, proton pump inhibitors do not affect insulin-dependent translocation of preexisting vesicles or GLUT4 sorting in recycling endosomes. On the contrary, wortmannin acutely inhibits insulin-dependent translocation of the preexisting vesicles but has no effect on vesicle formation.  相似文献   

11.
12.
AS160 (TBC1D4) is a known Akt substrate that is phosphorylated downstream of insulin action and that leads to regulated traffic of GLUT4. As GLUT4 vesicle fusion with the plasma membrane is a highly regulated step in GLUT4 traffic, we investigated whether AS160 and 14-3-3 interactions are involved in this process. Fusion was inhibited by a human truncated AS160 variant that encompasses the first N-terminal phosphotyrosine-binding (PTB) domain, by either of the two N-terminal PTB domains, and by a tandem construct of both PTB domains of rat AS160. We also found that in vitro GLUT4 vesicle fusion was strongly inhibited by the 14-3-3-quenching inhibitors R18 and fusicoccin. To investigate the mode of interaction of AS160 and 14-3-3, we examined insulin-dependent increases in the levels of these proteins on GLUT4 vesicles. 14-3-3γ was enriched on insulin-stimulated vesicles, and its binding to AS160 on GLUT4 vesicles was inhibited by the AS160 tandem PTB domain construct. These data suggest a model for PTB domain action on GLUT4 vesicle fusion in which these constructs inhibit insulin-stimulated 14-3-3γ interaction with AS160 rather than AS160 phosphorylation.  相似文献   

13.
To examine the functional role of the interaction between Munc18c and syntaxin 4 in the regulation of GLUT4 translocation in 3T3L1 adipocytes, we assessed the effects of introducing three different peptide fragments (20 to 24 amino acids) of Munc18c from evolutionarily conserved regions of the Sec1 protein family predicted to be solvent exposed. One peptide, termed 18c/pep3, inhibited the binding of full-length Munc18c to syntaxin 4, whereas expression of the other two peptides had no effect. In parallel, microinjection of 18c/pep3 but not a control peptide inhibited the insulin-stimulated translocation of endogenous GLUT4 and insulin-responsive amino peptidase (IRAP) to the plasma membrane. In addition, expression of 18c/pep3 prevented the insulin-stimulated fusion of endogenous and enhanced green fluorescent protein epitope-tagged GLUT4- and IRAP-containing vesicles into the plasma membrane, as assessed by intact cell immunofluorescence. However, unlike the pattern of inhibition seen with full-length Munc18c expression, cells expressing 18c/pep3 displayed discrete clusters of GLUT4 abd IRAP storage vesicles at the cell surface which were not contiguous with the plasma membrane. Together, these data suggest that the interaction between Munc18c and syntaxin 4 is required for the integration of GLUT4 and IRAP storage vesicles into the plasma membrane but is not necessary for the insulin-stimulated trafficking to and association with the cell surface.  相似文献   

14.
Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by approximately 4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane.  相似文献   

15.
Insulin modulates glucose disposal in muscle and adipose tissue by regulating the cellular redistribution of the GLUT4 glucose transporter. Protein kinase Akt/PKB is a central mediator of insulin-regulated translocation of GLUT4; however, the GLUT4 trafficking step(s) regulated by Akt is not known. Here, we use acute pharmacological Akt inhibition to show that Akt is required for insulin-stimulated exocytosis of GLUT4 to the plasma membrane. Our data also suggest that the AS160 Rab GAP is not the only Akt target required for insulin-stimulated GLUT4 translocation. Using a total internal reflection microscopy assay, we show that Akt activity is specifically required for an insulin-mediated prefusion step involving the recruitment and/or docking of GLUT4 vesicles to within 250 nm of the plasma membrane. Moreover, the insulin-stimulated fusion of GLUT4 vesicles with the plasma membrane can occur independently of Akt activity, although based on inhibition by wortmannin, it is dependent on phosphatidylinositol 3' kinase activity. Hence, to achieve full redistribution of GLUT4 into the plasma membrane, insulin signaling bifurcates to independently regulate both fusion and a prefusion step(s).  相似文献   

16.
Biosynthetic cargo is transported away from the Golgi in vesicles via microtubules. In the cell periphery the vesicles are believed to engage actin and then dock to fusion sites at the plasma membrane. Using dual-color total internal reflection fluorescence microscopy, we observed that microtubules extended within 100 nm of the plasma membrane and post-Golgi vesicles remained on microtubules up to the plasma membrane, even as fusion to the plasma membrane initiated. Disruption of microtubules eliminated the tubular shapes of the vesicles and altered the fusion events: vesicles required multiple fusions to deliver all of their membrane cargo to the plasma membrane. In contrast, the effects of disrupting actin on fusion behavior were subtle. We conclude that microtubules, rather than actin filaments, are the cytoskeletal elements on which post-Golgi vesicles are transported until they fuse to the plasma membrane.  相似文献   

17.
We have previously developed a cell-free assay from rat skeletal muscle that displayed in vitro glucose transporter 4 (GLUT4) transfer from large to small membrane structures by the addition of a cytosolic protein fraction. By combining protein fractionation and the in vitro GLUT4 transfer assay, we have purified a glycosylphosphatidylinositol (GPI) phospholipase D (PLD) that induces transfer of GLUT4 from small to large membranes. The in vitro GLUT4 transfer was activated and inhibited by suramin and 1,10-phenanthroline (an activator and an inhibitor of GPI-PLD activity, respectively). Furthermore, upon purification of the GLUT4 transporter protein, the protein displayed an elution profile in which the molecular mass was related to the charge, suggesting the presence or absence of phosphate. Second, by photoaffinity labeling of the purified GLUT4 with 3-(trifluoromethyl)-3-(m-[(125)I]iodopenyl)diazirine, both labeled phosphatidylethanolamine and fatty acids (constituents of a GPI link) were recovered. Third, by using phase transition of Triton X-114, the purified GLUT4 was found to be partly detergent resistant, which is a known characteristic of GPI-linked proteins. Fourth, the purified GLUT4 protein was recognized by an antibody raised specifically against GPI links. In conclusion, GLUT4-containing vesicles may be released from a membrane compartment by action of a GPI-PLD.  相似文献   

18.
Angiotensin IV and LVV-hemorphin 7 promote robust enhancing effects on learning and memory. These peptides are also competitive inhibitors of the insulin-regulated membrane aminopeptidase, suggesting that the biological actions of these peptides may result from inhibition of IRAP activity. However, the normal function of IRAP in the brain is yet to be determined. The present study investigated the sub-cellular distribution of IRAP in four neuronal cell lines and in the mouse brain. Using sub-cellular fractionation, IRAP was found to be enriched in low density microsomes, while lower levels of IRAP were also present in high density microsomes, plasma membrane and mitochondrial fractions. Dual-label immunohistochemistry confirmed the presence of IRAP in vesicles co-localized with the vesicular maker VAMP2, in the trans Golgi network co-localized with TGN 38 and in endosomes co-localized with EEA1. Finally using electron microscopy, IRAP specific immunoreactivity was predominantly associated with large 100-200 nm vesicles in hippocampal neurons. The location, appearance and size of these vesicles are consistent with neurosecretory vesicles. IRAP precipitate was also detected in intracellular structures including the rough endoplasmic reticulum, Golgi stack and mitochondrial membranes. The sub-cellular localization of IRAP in neurons demonstrated in the present study bears striking parallels with distribution of IRAP in insulin responsive cells, where the enzyme plays a role in insulin-regulated glucose uptake. Therefore, we propose that the function of IRAP in neurons may be similar to that in insulin responsive cells.  相似文献   

19.
The glucose transporter isoform GLUT4 is unique among the glucose transporter family of proteins in that, in resting cells, it is sequestered very efficiently in a storage compartment. In insulin-sensitive cells, such as fat and muscle, insulin stimulation leads to release of GLUT4 from this reservoir and its translocation to the plasma membrane. This process is crucial for the control of blood and tissue glucose levels. Investigations of the composition and structure of the GLUT4 storage compartment, together with the targeting motifs that direct GLUT4 to this compartment, have been extensive but have been controversial. Recent findings have now provided a clearer consensus of opinion on the mechanisms involved in the formation of this storage compartment. However, another controversy has now emerged, which is unresolved. This concerns the issue of whether the insulin-regulated step occurs at the level of release of GLUT4 from the storage compartment or at the level at which released vesicles fuse with the plasma membrane.  相似文献   

20.
周思畅  倪崖  石其贤 《生命科学》2005,17(4):323-327
ADAMs家族是含多结构域的跨膜蛋白。睾丸特异的ADAMs,在精子发生与附睾精子转运过程中,经过蛋白水解成为成熟精子的分子形式,与精.卵质膜结合和融合有关。对于精-卵质膜相互作用,ADAMs去整合素域具有关键氨基酸残基和特殊模体。模拟ADAM2和ADAM3去整合素域的短肽能用于鉴别特异性卵子识别蛋白。精子ADAMs去整合素域与卵子膜蛋白整合素β1、α4/α9、α6和CD9相互作用,介导了精卵质膜的结合与融合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号