首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacterial pneumonia is a leading cause of morbidity and mortality in the U.S. An effective innate immune response is critical for the clearance of bacteria from the lungs. IL-12, a key T1 cytokine in innate immunity, signals through STAT4. Thus, understanding how STAT4 mediates pulmonary immune responses against bacterial pathogens will have important implications for the development of rational immunotherapy targeted at augmenting innate immunity. We intratracheally administered Klebsiella pneumoniae to wild-type BALB/c and STAT4 knockout (STAT4-/-) mice. Compared with wild-type controls, STAT4-/- mice had decreased survival following intratracheal Klebsiella administration, which was associated with a higher lung and blood bacterial burden. STAT4-/- animals also displayed impaired pulmonary IFN-gamma production and decreased levels of proinflammatory cytokines, including the ELR- CXC chemokines IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma. Although total lung leukocyte populations were similar between STAT4-/- and wild-type animals following infection, alveolar macrophages isolated from infected STAT4-/- mice had decreased production of proinflammatory cytokines, including IFN-gamma, compared with infected wild-type mice. The intrapulmonary overexpression of IFN-gamma concomitant with the systemic administration of IFN-gamma partially reversed the immune deficits observed in STAT4-/- mice, resulting in improved bacterial clearance from the blood. Collectively, these studies demonstrate that STAT4 is required for the generation of an effective innate host defense against bacterial pathogens of the lung.  相似文献   

3.
4.
Infection by Listeria monocytogenes causes serious morbidity and mortality during the neonatal period. Previous studies established that immunostimulatory CpG oligodeoxynucleotides (ODN) can increased the resistance of adult mice to many infectious pathogens, including Listeria. This work examines the capacity of CpG ODN to stimulate a protective immune response in newborns. Results indicate that dendritic cells, macrophages, and B cells from 3-day-old mice respond to CpG stimulation by secreting IFN-gamma, IL-12, and/or TNF-alpha. Spleen cells from CpG-treated neonates produce large amounts of cytokine and NO when exposed to bacteria in vitro. Newborns treated with CpG ODN are protected from lethal Listeria challenge and generate Ag-specific CD4 and CD8 T cells that afford long-term protection against subsequent infection. These results demonstrate that cellular elements of the neonatal immune system respond to stimulation by CpG ODN, thereby reducing host susceptibility to infectious pathogens.  相似文献   

5.
Innate immunity provides the first line of defense against invading pathogens and is essential for survival in the absence of adaptive immune responses. Innate immune recognition relies on a limited number of germ-line encoded receptors, such as Toll-like receptors (TLRs), that evolved to recognize conserved molecular patterns of microbial origin. To date, ten transmembrane proteins in the TLR family have been described. It is becoming increasingly clear that bacterial CpG DNA and synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG are potent inducers of the innate immune system including dendritic cells (DCs), macrophages, and natural killer (NK) and NKT cells. Recent studies indicate that mucosal or systemic delivery of CpG DNA can act as a potent adjuvant in a vaccine combination or act alone as an anti-microbial agent. Recently, it was shown that TLR9 is essential for the recognition of unmethylated CpG DNA since cells from TLR9-deficient mice are unresponsive to CpG stimulation. Although the effects of CpG DNA on bone marrow-derived cells are beginning to unfold, there has been little or no information regarding the mechanisms of CpG DNA function on non-immune cells or tissues. This review focuses on the recent advances in CpG-DNA/TLR9 signaling effects on the activation of innate immunity.  相似文献   

6.
Sublethal hyperoxia impairs pulmonary innate immunity   总被引:2,自引:0,他引:2  
Supplemental oxygen is often required in the treatment of critically ill patients. The impact of hyperoxia on pulmonary host defense is not well-established. We hypothesized that hyperoxia directly impairs pulmonary host defense, beyond effects on alveolar wall barrier function. C57BL/6 mice were kept in an atmosphere of >95% O(2) for 4 days followed by return to room air. This exposure does not lead to mortality in mice subsequently returned to room air. Mice kept in room air served as controls. Mice were intratracheally inoculated with Klebsiella pneumoniae and followed for survival. Alveolar macrophages (AM) were harvested by bronchoalveolar lavage after 4 days of in vivo hyperoxia for ex vivo experiments. Mortality from pneumonia increased significantly in mice exposed to hyperoxia compared with infected mice in room air. Burden of organisms in the lung and dissemination of infection were increased in the hyperoxia group whereas accumulation of inflammatory cells in the lung was impaired. Hyperoxia alone had no impact on AM numbers, viability, or ability to phagocytize latex microbeads. However, following in vivo hyperoxia, AM phagocytosis and killing of Gram-negative bacteria and production of TNF-alpha and IL-6 in response to LPS were significantly reduced. AM surface expression of Toll-like receptor-4 was significantly decreased following in vivo hyperoxia. Thus sublethal hyperoxia increases Gram-negative bacterial pneumonia mortality and has a significant adverse effect on AM host defense function. Impaired AM function due to high concentrations of supplemental oxygen may contribute to the high rate of ventilator-associated pneumonia seen in critically ill patients.  相似文献   

7.
Chlamydia trachomatis infection in neonates, not adults, has been associated with the development of chronic respiratory sequelae. Adult chlamydial infections induce Th1-type responses that subsequently clear the infection, whereas the neonatal immune milieu in general has been reported to be biased toward Th2-type responses. We examined the protective immune responses against intranasal Chlamydia muridarum challenge in 1-day-old C57BL/6 and BALB/c mice. Infected C57BL/6 pups displayed earlier chlamydial clearance (day 14) compared with BALB/c pups (day 21). However, challenged C57BL/6 pups exhibited prolonged deficits in body weight gain (days 12-30) compared with BALB/c pups (days 9-12), which correlated with continual pulmonary cellular infiltration. Both strains exhibited a robust Th1-type response, including elevated titers of serum antichlamydial IgG2a and IgG2b, not IgG1, and elevated levels of splenic C. muridarum-specific IFN-gamma, not IL-4, production. Additionally, elevated IFN-gamma, not IL-4 expression, was observed locally in the infected lungs of both mouse strains. The immune responses in C57BL/6 pups were significantly greater compared with BALB/c pups after chlamydial challenge. Importantly, infected mice deficient in IFN-gamma or IFN-gamma receptor demonstrated enhanced chlamydial dissemination, and 100% of animals died by 2 wk postchallenge. Collectively, these results indicate that neonatal pulmonary chlamydial infection induces a robust Th1-type response, with elevated pulmonary IFN-gamma production, and that endogenous IFN-gamma is important in protection against this infection. The enhanced IFN-gamma induction in the immature neonatal lung also may be relevant to the development of respiratory sequelae in adult life.  相似文献   

8.
Oligodeoxynucleotides containing CpG motifs (CpG ODNs) mimic microbial DNA and activate effectors of the innate immune response, which limits the spread of pathogens and promotes an adaptive immune response. CpG ODNs have been shown to protect mice from infection with intracellular pathogens. Unfortunately, CpG motifs that optimally stimulate humans are only weakly active in mice, mandating the use of nonhuman primates to monitor the activity and safety of "human" CpG ODNs in vivo. This study demonstrates that CpG ODN treatment of rhesus macaques significantly reduces the severity of the lesions caused by a challenge with Leishmania: Leishmania superinfection is common in immunocompromised hosts, particularly those infected with HIV. This study shows that PBMCs from HIV-infected subjects respond to stimulation with CpG ODNs. To determine whether CpG ODNs can protect retrovirus-infected primates, SIV-infected macaques were treated with CpG ODNs and then challenged with Leishmania: Both lesion size and parasite load were significantly reduced in the CpG-treated animals. These findings support the clinical development of CpG ODNs as immunoprotective agents in normal and HIV-infected patients.  相似文献   

9.
Anti-helminth immunity involves CD4+ T cells, yet the precise effector mechanisms responsible for parasite killing or expulsion remain elusive. We now report an essential role for antibodies in mediating immunity against the enteric helminth Heligmosomoides polygyrus (Hp), a natural murine parasite that establishes chronic infection. Polyclonal IgG antibodies, present in naive mice and produced following Hp infection, functioned to limit egg production by adult parasites. Comparatively, affinity-matured parasite-specific IgG and IgA antibodies that developed only after multiple infections were required to prevent adult worm development. These data reveal complementary roles for polyclonal and affinity-matured parasite-specific antibodies in preventing enteric helminth infection by limiting parasite fecundity and providing immune protection against reinfection, respectively. We propose that parasite-induced polyclonal antibodies play a dual role, whereby the parasite is allowed to establish chronicity, while parasite load and spread are limited, likely reflecting the long coevolution of helminth parasites with their hosts.  相似文献   

10.
Innate immune cells such as macrophages and neutrophils initiate protective inflammatory responses and engage antimicrobial responses to provide frontline defence against invading pathogens. These cells can both restrict the availability of certain transition metals that are essential for microbial growth and direct toxic concentrations of metals towards pathogens as antimicrobial responses. Zinc is important for the structure and function of many proteins, however excess zinc can be cytotoxic. In recent years, several studies have revealed that innate immune cells can deliver toxic concentrations of zinc to intracellular pathogens. In this review, we discuss the importance of zinc status during infectious disease and the evidence for zinc intoxication as an innate immune antimicrobial response. Evidence for pathogen subversion of this response is also examined. The likely mechanisms, including the involvement of specific zinc transporters that facilitate delivery of zinc by innate immune cells for metal ion poisoning of pathogens are also considered. Precise mechanisms by which excess levels of zinc can be toxic to microorganisms are then discussed, particularly in the context of synergy with other antimicrobial responses. Finally, we highlight key unanswered questions in this emerging field, which may offer new opportunities for exploiting innate immune responses for anti‐infective development.  相似文献   

11.
Immunostimulatory CpG oligodeoxynucleotides (ODN) have proven effective as adjuvants for protein-based vaccines, but their impact on immune responses induced by live viral vectors is not known. We found that addition of CpG ODN to modified vaccinia Ankara (MVA) markedly improved the induction of longer-lasting adaptive protective immunity in BALB/c mice against intranasal pathogenic vaccinia virus (Western Reserve; WR). Protection was mediated primarily by CD8(+) T cells in the lung, as determined by CD8-depletion studies, protection in B cell-deficient mice, and greater protection correlating with CD8(+) IFN-gamma-producing cells in the lung but not with those in the spleen. Intranasal immunization was more effective at inducing CD8(+) T cell immunity in the lung, and protection, than i.m. immunization. Addition of CpG ODN increased the CD8(+) response but not the Ab response. Depletion of CD4 T cells before vaccination with MVA significantly diminished protection against pathogenic WR virus. However, CpG ODN delivered with MVA was able to substitute for CD4 help and protected CD4-depleted mice against WR vaccinia challenge. This study demonstrates for the first time a protective adjuvant effect of CpG ODN for a live viral vector vaccine that may overcome CD4 deficiency in the induction of protective CD8(+) T cell-mediated immunity.  相似文献   

12.
Autophagy in innate immunity against intracellular bacteria   总被引:1,自引:0,他引:1  
Many pathogenic bacteria can invade phagocytic and non-phagocytic cells and colonize them intracellularly, then become disseminated to other cells. The endocytic degradation pathway is thought to be the only prevention against such intracellular pathogens. Autophagy, a fundamental cellular homeostasis pathway that operates with the intracellular degradation/recycling system, causes the turnover of cellular components by delivering portions of the cytoplasm and organelles to lysosomes. Recently, we reported that autophagic degradation is a previously unrecognized effector of host innate immunity. Streptococcus pyogenes (Group A Streptococcus; GAS) successfully enters human epithelial cells via endocytosis. GAS immediately escapes from the endosomes to the cytoplasm and gains a replicative niche, after which GAS in the cytoplasm is trapped in autophagosome-like compartments and degraded upon fusion with lysosomes. This process indicates that autophagy plays a protective role in infectious diseases. We also found that autophagic degradation was induced against Staphylococcus aureus, while methicillin-resistant S. aureus were resistant to autophagic degradation. The present review focuses on the protective function of autophagy against bacterial invasion of cells.  相似文献   

13.
The development of efficient vaccines against COVID-19 is an emergent need for global public health. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major target for the COVID-19 vaccine. To quickly respond to the outbreak of the SARS-CoV-2 pandemic, a nucleic acid-based vaccine is a novel option, beyond the traditional inactivated virus vaccine or recombinant protein vaccine. Here, we report a DNA vaccine containing the spike gene for delivery via electroporation. The spike genes of SARS-CoV and SARS-CoV-2 were codon optimized for mammalian cell expression and then cloned into mammalian cell expression vectors, called pSARS-S and pSARS2-S, respectively. Spike protein expression was confirmed by immunoblotting after transient expression in HEK293T cells. After immunization, sera were collected for antigen-specific antibody and neutralizing antibody titer analyses. We found that both pSARS-S and pSARS2-S immunization induced similar levels of antibodies against S2 of SARS-CoV-2. In contrast, only pSARS2-S immunization induced antibodies against the receptor-binding domain of SARS-CoV-2. We further found that pSARS2-S immunization, but not pSARS-S immunization, could induce very high titers of neutralizing antibodies against SARS-CoV-2. We further analyzed SARS-CoV-2 S protein-specific T cell responses and found that the immune responses were biased toward Th1. Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. These data suggest that DNA vaccination could be a promising approach for protecting against COVID-19.  相似文献   

14.
Recent reports support the concept that the major defect in polymicrobial sepsis is an impaired immunologic response to infection. Oligodeoxynucleotides containing CpG sequence motifs (CpG-ODN) were previously shown to induce immune protection in models of chronic infection with intracellular bacteria, parasites, and viruses due to their ability to augment IFN-gamma-dependent Th1 responses. Here, we demonstrate that challenging mice with CpG-ODN substantially increases the resistance against acute polymicrobial sepsis. Systemic levels of IL-12, IL-18, and IL-10 were not altered in CpG-ODN-treated mice as compared with controls. In contrast, administration of CpG-ODN resulted in a strongly enhanced accumulation of neutrophils at the primary site of infection. Neutrophils of CpG-ODN-treated mice exhibited an up-regulation of phagocytic receptors, an increased phagocytic activity, and an elevated production of reactive oxygen metabolites. These results suggest that the protective effects of CpG-ODNs in acute polymicrobial sepsis are related to an enhanced effector cell response of innate immunity. CpG-ODN may therefore represent potent agents for the treatment of sepsis-associated immunoparalysis.  相似文献   

15.
16.
Ambient ozone primes pulmonary innate immunity in mice   总被引:1,自引:0,他引:1  
Exposure to ozone in air pollution in urban environments is associated with increases in pulmonary-related hospitalizations and mortality. Because ozone also alters clearance of pulmonary bacterial pathogens, we hypothesized that inhalation of ozone modifies innate immunity in the lung. To address our hypothesis, we exposed C57BL/6J mice to either free air or ozone, and then subsequently challenged with an aerosol of Escherichia coli LPS. Pre-exposure to ozone resulted in enhanced airway hyperreactivity, higher concentrations of both total protein and proinflammatory cytokines in lung lavage fluid, enhanced LPS-mediated signaling in lung tissue, and higher concentrations of serum IL-6 following inhalation of LPS. However, pre-exposure to ozone dramatically reduced inflammatory cell accumulation to the lower airways in response to inhaled LPS. The reduced concentration of cells in the lower airways was associated with enhanced apoptosis of both lung macrophages and systemic circulating monocytes. Moreover, both flow cytometry and confocal microscopy indicate that inhaled ozone causes altered distribution of TLR4 on alveolar macrophages and enhanced functional response to endotoxin by macrophages. These observations indicate that ozone exposure increases both the pulmonary and the systemic biologic response to inhaled LPS by priming the innate immune system.  相似文献   

17.
Clinical and genetic studies in humans and animal models indicate a crucial protective role for the complement system in systemic lupus erythematosus (SLE). This presents a paradox because the complement system is considered to be an important mediator of the inflammation that is observed in patients with SLE. One current view is that complement provides protection by facilitating the rapid removal of apoptotic debris to circumvent an autoimmune response. In this Opinion article, I discuss an alternative model in which complement - together with other components of the innate immune system - participates in the 'presentation' of SLE-inducing self-antigens to developing B cells. In this way, the complement system and innate immunity protect against responses to SLE (self) antigens by enhancing the elimination of self-reactive lymphocytes.  相似文献   

18.
19.
Encephalitozoon cuniculi is a protozoan parasite that has been implicated recently as a cause of opportunistic infection in immunocompromised individuals. Protective immunity in the normal host is T cell-dependent. In the present study, the role of individual T cell subtypes in immunity against this parasite has been studied using gene knockout mice. Whereas CD4-/- animals resolved the infection, mice lacking CD8+ T cells or perforin gene succumbed to parasite challenge. The data obtained in these studies suggest that E. cuniculi infection induces a strong and early CD8+ T response that is important for host protection. The CD8+ T cell-mediated protection depends upon the CTL activity of this cell subset, as the host is rendered susceptible to infection in the absence of this function. This is the first report in which a strong dependence upon the cytolytic activity of host CD8+ T cells has been shown to be important in a parasite infection.  相似文献   

20.
The inhibitor of apoptosis protein (IAP) family has been implicated in immune regulation, but the mechanisms by which IAP proteins contribute to immunity are incompletely understood. We show here that X-linked IAP (XIAP) is required for innate immune control of Listeria monocytogenes infection. Mice deficient in XIAP had a higher bacterial burden 48 h after infection than wild-type littermates, and exhibited substantially decreased survival. XIAP enhanced NF-kappaB activation upon L. monocytogenes infection of activated macrophages, and prolonged phosphorylation of Jun N-terminal kinase (JNK) specifically in response to cytosolic bacteria. Additionally, XIAP promoted maximal production of pro-inflammatory cytokines upon bacterial infection in vitro or in vivo, or in response to combined treatment with NOD2 and TLR2 ligands. Together, our data suggest that XIAP regulates innate immune responses to L. monocytogenes infection by potentiating synergy between Toll-like receptors (TLRs) and Nod-like receptors (NLRs) through activation of JNK- and NF-kappaB-dependent signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号