首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
  • 1 There is a paucity of research on epigean freshwater lotic meiofauna. This may result from a previous emphasis on interstitial (groundwater and hyporheic) meiofauna and/or a reliance on sampling methodologies in lotic systems which are inappropriate for meiofauna.
  • 2 Meiofauna contribute much to the diversity of lotic ecosystems. Species lists for seven streams reveal that meiofauna contribute 58–82% of total species numbers, with rotifers and chironomids dominating most systems. The absence of taxonomic keys for most meiofaunal taxa in large areas of the world precludes a wider analysis of their contribution to lotic diversity and an assessment of biogeographical patterns and processes.
  • 3 The trophic and functional role of meiofauna in lotic ecosystems is unclear. There are few estimates of meiofaunal production in freshwaters and biomass spectra have produced conflicting results for lotic meiofauna. Present static estimates suggest that the contribution of meiofauna to lotic productivity and biomass is small to moderate, but further studies incorporating a temporal component may provide a more realistic picture of the total contribution of meiofauna to biomass size spectra.
  • 4 Meiofauna differ from macroinvertebrates in several respects apart from size and conceptual models for lotic ecosystems should include all metazoans if they are to be truly representative.
  • 5 Information on the basic ecology of certain lotic meiofauna (i.e. nematodes, tardigrades, microturbellarians) is urgently required. For those groups whose distributional patterns are better understood (e.g. microcrustaceans), the mechanisms underpinning these patterns should be explored. It is essential that the importance of meiofauna is recognised by lotic ecologists; the only realistic way forward is for greater collaboration among meiofaunal ecologists and taxonomists and other lotic scientists.
  相似文献   

2.
What drives small‐scale spatial patterns in lotic meiofauna communities?   总被引:2,自引:0,他引:2  
  • 1 Lotic meiofaunal communities demonstrate extremely variable dynamics, especially when viewed at small spatial scales (≤ metres). Given the limited amount of research on lotic meiofauna, we chose to organise our discussion of their small‐scale spatial patterns around the dominant factors we believe drive their spatial distributions in streams. We separate scale‐dependent effects that structure lotic meiofauna into biotic factors (e.g. predation, food quantity/quality, dispersal) and abiotic factors (e.g. local flow dynamics and substratum characteristics).
  • 2 The impact of predation on the distribution of meiofauna varies with the scale over which predators forage (e.g. fish predation influences meiofauna in different ways and at broader spatial scales than do invertebrate predators), the type of streambed substrata in which the predator‐prey interactions occur, and the dispersal ability of different meiofauna. The latter is greatly influenced by predator and prey (meiofauna) interactions with the flow environment.
  • 3 Organic matter influences the small‐scale distribution of meiofauna in streams. Both its quality as food (as indicated by C:N content, ATP content, or microbial biomass) and its spatial distribution on the streambed, influence meiofauna patchiness, community structure and life history characteristics. As a habitat, the structure that organic matter provides (e.g. wood or leaves) can influence predator‐prey interactions, offer materials for case‐building and offer refugia during disturbance events ‐ all of which influence the small‐scale spatial distribution of meiofauna.
  • 4 Stream flow influences the distribution of meiofauna at broad scales (10s–100s of metres), primarily because of the high susceptibility of meiofauna to passive drift; small‐scale interactions between flow and substrata are also important, however, particularly at more localised (≤ metre) scales. At both scales, substratum particle size is important to interstitial‐dwelling fauna, influencing the probability of passive drift by meiofauna as well as local microhabitat conditions (e.g. dissolved oxygen; upwelling/downwelling in the hyporheic zone) and, thus, the small‐scale distribution among microhabitats.
  • 5 In general, the processes governing the distribution of meiofauna at small scales cannot be separated entirely from those processes working at larger scales. A conceptual diagram is presented illustrating the relative importance of various factors in influencing the spatial patterns of meiofauna and over what scales these factors act.
  相似文献   

3.
An introduction to a special issue on lotic meiofauna   总被引:1,自引:0,他引:1  
  • 1 This special issue focuses on the meiofauna of lotic freshwater systems, providing a review of the biology and ecology of this relatively poorly studied constituent of the benthos in running waters.
  • 2 Six papers review the biology and ecology of the major groups of lotic meiofauna: microturbellarians; rotifers and gastrotrichs; nematodes; water mites; microcrustaceans and tardigrades.
  • 3 Current knowledge of the ecology of lotic meiofauna is presented further in six papers that also highlight important future directions for research.
  相似文献   

4.
  • 1 This paper summarises the most important contributions on trophic relationships of lotic meiofauna. In contrast to marine research, the few quantitative studies of the freshwater meiobenthos have shown that these invertebrates not only take up particulate/fine organic matter, but also dissolved organic substances attached to organic particles. In lotic ecosystems, further estimates of grazing rate and bacterial/algal ingestion rate are needed, particularly in situ measurements.
  • 2 The effects of macroinvertebrate predators upon meiofauna are still under debate. Depending on the type of experiments (laboratory vs. field) it seems that macrofauna may or may not affect meiofauna. Field samples and analyses of gut contents of larval tanypod chironomids have shown that the impact upon meiofauna was low and larvae were nonselective predators. Predation amounted to 2.2% of the combined prey density and prey consumption averaged 1.3 individuals per predator individual per year.
  • 3 Adding taxonomic resolution by including the meiofaunal component within lotic food webs distinctly increases the number of total species and, as a consequence, changes food web statistics. Webs that included meiofauna revealed that these metazoans contributed substantially to the percentage of intermediate species (species with predators and prey). The resolution of dietary analyses of major consumers of macro‐ and meiobenthos showed that many stream invertebrates feed on meiofauna.
  相似文献   

5.
Two experiments were conducted in Tampa Bay, Florida, investigating the effect of harpacticoid copepod density in sediments on active water column dispersal. Both experiments involved adding harpacticoid copepods, in three density levels, to defaunated sediments and monitoring subsequent dispersal. The first experiment was conducted in the field in January 1985. Active dispersal in this experiment was judged density-dependent for total number of harpacticoids and the species or species groups Robertsonia spp. and Longipedia americana Wells. Dispersal of Zausodes arenicolus Wilson was density-independent. In the second experiment (July 1985), harpacticoids were brought into the laboratory. Dispersal in this experiment was density-dependent for total number of harpacticoids and a Nitocra spp. Dispersal of Robertsonia spp. was inversely density-dependent, while dispersal of Z. arenicolus and Metis holothuriae (Edwards) was density-independent. These results suggest density may influence the dispersal of some species of harpacticoid copepods.  相似文献   

6.
The range sizes of sediment‐dwelling deep‐sea species are largely unknown. Such knowledge is important because a deep sea composed in large part of species with 100‐km‐scale ranges would be very different from one composed predominantly of species with 1000‐km‐scale ranges. For example, the total species richness would be much greater in the first case than in the second. As a step towards the determination of the distribution of species’ range sizes in the deep sea, we asked whether harpacticoid copepods (Crustacea) on the continental rise in the northeastern Pacific had 1000‐km‐scale range sizes. We chose harpacticoids because they occur widely in deep‐sea sediments and thus are a typical deep‐sea taxon. In addition, they have no pelagic stage in their life history, so they allow a conservative test of hypotheses about species’ range sizes. We used morphology and gene‐sequence data to assign individuals to species. At least 13.3% of the species we studied had 1000‐km‐scale ranges, raising the question of how these species maintain genetic continuity.  相似文献   

7.
Arunachalam  M.  Balakrishnan Nair  N. 《Hydrobiologia》1988,167(1):515-522
A temporal study of harpacticoid copepod populations associated with the seagrass Halophila ovalis was undertaken in the Ashtamudi Estuary, south-west coast of India. A total of 19 species representing 8 families was recorded in this assemblage. Harpacticoids formed 7.52% of the total phytal meiofauna. At the species level, harpacticoids exhibit parallel assemblages with phytal zones, found in other localities.  相似文献   

8.
9.
Copepods are known as important consumers of primary production and are eaten by larger animals. They therefore form a main link to higher trophic levels. While feeding pathways and specificity of planktonic copepods have been well studied, the selectivity of the benthic harpacticoid copepods is far less documented. A better knowledge of the functional ecology of harpacticoids as important grazers on primary producers may have consequences for the re-evaluation of basic energy flow in benthic ecosystems.We tested whether size selectivity for diatoms exists in harpacticoid copepods. We hypothesized that size selectivity of harpacticoid copepod species is strongly related to body size. Because of morphological constraints, we expected smaller copepods to prefer smaller diatoms while larger copepods should be able to consume both small and large diatoms. We tested this hypothesis in four harpacticoid copepod species of varied body size: Tigriopus brevicornis, Harpacticus obscurus, Amphiascus minutus and Paramphiascella fulvofasciata. As food source we used two 13C labelled strains of the benthic diatom Seminavis robusta with a four-fold difference in cell biovolume.Three out of four harpacticoid species showed size selectivity: H. obscurus and A. minutus preferred the larger Seminavis cells, while P. fulvofasciata selected the smaller Seminavis cells. Based on monoclonal treatments, there was no clear preference found for T. brevicornis although there was a small preference for large cells in the mixed treatments. Except for P. fulvofasciata, all species showed a lower uptake when offered the mixed diet (both small and large cells). Although most species showed a size selectivity, our results suggest that this selectivity was not related to their body size. However, the only species that ate significantly more of small diatoms was characterised by comparatively small mouthparts in relation to its body size.  相似文献   

10.
Summary Twenty nine harpacticoid copepods are new to Bermuda and significant changes are noted in the distribution records of several species. Six temporary groups are organized to separate the copepods on their apparent zoogeographical ranges: (1) cosmopolitan, (2) warm temperate-tropical, (3) North Atlantic, (4) North Atlantic-Mediterranean, (5) Endemic to Bermuda and (6) uncertain. These six artificial groups do not necessarily correspond to the standard zoogeographical provinces. Endemism of the Bermudian harpacticoids is similar to the rates reported and predicted for other fauna on North Atlantic Islands. Low endemic rates probably reflect changing environmental conditions during the late Pleistocene.Three distinct harpacticoid isocommunities are reported. The associations are similar to harpacticoid assemblages found in similar sediment types in different parts of the world. All three associations are in agreement with Thorson's (1957) concept of the parallel level-bottom community.Contribution No. 78 from the Center for Marine and Environmental Studies, Lehigh University, Bethlehem, Pa., U.S.A.-Contribution No. 467 from the Bermuda Biological Station, St. George's West, Bermuda.  相似文献   

11.
Aim In Europe, the relationships between species richness and latitude differ for lentic (standing water) and lotic (running water) species. Freshwater animals are highly dependent on suitable habitat, and thus the distribution of available habitat should strongly influence large‐scale patterns of species richness. We tested whether habitat availability can account for the differences in species richness patterns between European lentic and lotic freshwater animals. Location Europe. Methods We compiled occurrence data of 1959 lentic and 2445 lotic species as well as data on the amount of lentic and lotic habitats across 25 pre‐defined biogeographical regions of European freshwaters. We used the range of elevation of each region as a proxy for habitat diversity. We investigated the relationships between species richness, habitat availability and habitat diversity with univariate and multiple regression analyses. Results Species richness increased with habitat availability for lentic species but not for lotic species. Species richness increased with elevational range for lotic species but decreased for lentic species. For both groups, neither habitat availability nor diversity could account for previously reported latitudinal patterns in species richness. For lotic species, richness declined with latitude, whereas there was no relationship between habitat availability and latitude. For lentic species, richness showed a hump‐shaped relationship with latitude, whereas available habitat increased with latitude. Main conclusions Habitat availability and diversity are poor predictors of species richness of the European freshwater fauna across large scales. Our results indicate that the distributions of European freshwater animals are probably not in equilibrium and may still be influenced by history, namely the recurrent European glaciations and possible differences in post‐glacial recolonization. The distributions of lentic species appear to be closer to equilibrium than those of lotic species. This lends further support to the hypothesis that lentic species have a higher propensity for dispersal than lotic species.  相似文献   

12.
On coral reefs, the epilithic algal matrix (EAM) is widely recognised as an important resource for herbivorous and detritivorous fishes. In comparison, little is known of the interaction between benthic carnivores and the EAM, despite the abundance of Crustacea within the EAM. The trophic importance of the EAM to fishes was investigated in Pioneer Bay, Orpheus Island, Great Barrier Reef. Fish densities were quantified using visual and clove oil censuses, and gut content analyses conducted on abundant fish species. Crustaceans were found to be an important dietary category, contributing between 49.5 and 100 % of the gut contents, with harpacticoid copepods being the dominant component. Of the benthic carnivores, the goby Eviota zebrina was found to consume the most harpacticoids with a mean of 249 copepods m?2 day?1. This represents approximately 0.1 % of the available harpacticoid population in the EAM. In a striking comparison, herbivorous parrotfishes were estimated to consume over 12,000 harpacticoids m?2 day?1, over 27 times more than all benthic carnivores surveyed, representing approximately 5.3 % of the available harpacticoid copepod population each day. The high consumption of harpacticoid copepods by benthic carnivores and parrotfishes indicates that harpacticoids form an important trophic link between the EAM and higher trophic levels on coral reefs.  相似文献   

13.
Meiofauna play an essential role in the diet of small and juvenile fish. However, it is less well documented which meiofaunal prey groups in the sediment are eaten by fish. Trophic relationships between five demersal fish species (solenette, goby, scaldfish, dab <20 cm and plaice <20 cm) and meiofaunal prey were investigated by means of comparing sediment samples and fish stomach contents collected seasonally between January 2009 and January 2010 in the German Bight. In all seasons, meiofauna in the sediment was numerically dominated by nematodes, whereas harpacticoids dominated in terms of occurrence and biomass. Between autumn and spring, the harpacticoid community was characterized by Pseudobradya minor and Halectinosoma canaliculatum, and in summer by Longipedia coronata. Meiofaunal prey dominated the diets of solenette and gobies in all seasons, occurred only seasonally in the diet of scaldfish and dab, and was completely absent in the diet of plaice. For all fish species (excluding plaice) and in each season, harpacticoids were the most important meiofauna prey group in terms of occurrence, abundance and biomass. High values of Ivlev’s index of selectivity for Pseudobradya spp. in winter and Longipedia spp. in summer provided evidence that predation on harpacticoids was species-selective, even though both harpacticoids co-occurred in high densities in the sediments. Most surficial feeding strategies of the studied fish species and emergent behaviours of Pseudobradya spp. and Longipedia spp. might have caused this prey selection. With increasing fish sizes, harpacticoid prey densities decreased in the fish stomachs, indicating a diet change towards larger benthic prey during the ontogeny of all fish species investigated.  相似文献   

14.
Spatial patterns in the abundance of the softsediment meiofauna and a predatory goby, Valenciennia longipinnis, were examined in the lagoon of One Tree Reef (Great Barrier Reef). The study provided a quantitative framework to assess the importance of physical factors on and predator prey interactions between the meiofauna and V.longipinnis. Patterns of abundance were examined at two spatial scales: among four habitats (100's of m apart) and among sites (10's of m apart) within habitats. Of the four major constituents of the meiofauna (harpacticoid copepods, nematodes, polychaetes and oligochaetes), gut analyses showed that harpacticoid copepods were the primary prey of V.longipinnis. Spatial patterns of meiofaunal abundance in the lagoon were taxon specific. Polychaetes and harpacticoid copepods exhibited significant differences among habitats. Within habitats, however, polychaetes exhibited significant differences between sites whereas copepods were uniformly distributed. Abundances of nematodes and oligochaetes did not differ between habitats. Densities of nematodes differed significantly between sites while the number of oligochaetes were similar at both spatial scales. V.longipinnis was more abundant in shallow habitats than in deep ones. This study suggests that sediment type may be an important factor influencing the distribution of both the goby and the meiofauna. V.longipinnis and two of the four meiofaunal taxa (harpacticoid copepods and polychaetes) were more abundant in the shallow habitat with fine-grained sediments. There was no significant difference between abundances of meiofaunal taxa in sites where V.longipinnis was present or absent. Overall, more fish occurred in the habitat which had the highest densities of harpacticoid copepods.  相似文献   

15.
Taxonomic and ecological studies of freshwater harpacticoid copepods are limited globally by the ability to easily and accurately identify specimens. Here, we test the use of the mitochondrial cytochrome c oxidase subunit I (COI) gene locus as a tool for assessing the diversity of freshwater Harpacticoida. We obtained sequences from New Zealand harpacticoid copepods, representing two families, five genera and nine species, including the non-indigenous Elaphoidella sewelli. All species were delineated by the COI gene. However, high intraspecific diversity was evident among populations of Elaphoidella bidens (>12%), and between North and South Island populations of Bryocamptus pygmaeus (>18%), potentially indicating the presence of morphologically cryptic taxa. We suggest that mitochondrial DNA (COI) sequences can provide a useful tool for the routine identification of freshwater harpacticoid copepods. Applications of these data will include assessing species diversity and biogeography as well as assisting with the detection of non-indigenous species.  相似文献   

16.
The zoogeographic distributions of the 2,814 species of copepods reported from freshwater are analysed. Faunal diversity is compared between zoogeographic regions: the Palaearctic region has more than double the species richness of the next most diverse region, the Neotropical. Historical factors affecting levels of diversity are identified. More than 90% of all freshwater copepods are endemic to a single-zoogeographic region and endemic genera occur in all regions except Antarctica. Species that are not endemic to a single region include the highly vagile and cosmopolitan species occurring in four or more regions. The greatest faunal connectivity, as identified by Sørensen’s Index, is between Palaearctic and Nearctic regions, and identifies the Holarctic taxa. Key human-related issues, such as the role of copepods as vectors for human parasites and the losses caused by parasitic copepods in commercial aquaculture, are mentioned.  相似文献   

17.
18.
The importance of meiofauna to lotic ecosystem functioning   总被引:2,自引:0,他引:2  
  • 1 Although meiofauna occur in large numbers in many streams, almost nothing is known about their functional role.
  • 2 In other systems, meiofauna influence microbial and organic matter dynamics through consumption and bioturbation. Given that these are important processes in streams, meiofauna have the potential to influence lotic function by changing the quality and availability of organic matter as well as the number and biotic activity of benthic microbes. Selective feeding by meiofauna has the potential to alter the availability of nutrients and organic carbon.
  • 3 Meiofauna generally contribute only a small amount to metazoan production and biomass in streams, although exceptions occur. Within a stream, the relative importance of meiofauna may reflect whether the temporary or permanent meiofauna dominate the meiobenthos as well as the season when samples are collected.
  • 4 We suggest stream conditions (small sediment grain size, restricted interstitial flow) under which meiofauna have the greatest likelihood of influencing stream ecosystem function.
  • 5 Important areas for future research include addressing whether meiofauna feed selectively, whether meiofauna are links or sinks for carbon in streams, and whether bioturbation by meiofauna influences stream ecosystem processes in a predictable manner.
  相似文献   

19.
  1. Previous macrophysiological studies suggested that temperature‐driven color lightness and body size variations strongly influence biogeographical patterns in ectotherms. However, these trait–environment relationships scale to local assemblages and the extent to which they can be modified by dispersal remains largely unexplored. We test whether the predictions of the thermal melanism hypothesis and the Bergmann's rule hold for local assemblages. We also assess whether these trait–environment relationships are more important for species adapted to less stable (lentic) habitats, due to their greater dispersal propensity compared to those adapted to stable (lotic) habitats.
  2. We quantified the color lightness and body volume of 99 European dragon‐ and damselflies (Odonata) and combined these trait information with survey data for 518 local assemblages across Europe. Based on this continent‐wide yet spatially explicit dataset, we tested for effects temperature and precipitation on the color lightness and body volume of local assemblages and assessed differences in their relative importance and strength between lentic and lotic assemblages, while accounting for spatial and phylogenetic autocorrelation.
  3. The color lightness of assemblages of odonates increased, and body size decreased with increasing temperature. Trait–environment relationships in the average and phylogenetic predicted component were equally important for assemblages of both habitat types but were stronger in lentic assemblages when accounting for phylogenetic autocorrelation.
  4. Our results show that the mechanism underlying color lightness and body size variations scale to local assemblages, indicating their general importance. These mechanisms were of equal evolutionary significance for lentic and lotic species, but higher dispersal ability seems to enable lentic species to cope better with historical climatic changes. The documented differences between lentic and lotic assemblages also highlight the importance of integrating interactions of thermal adaptations with proxies of the dispersal ability of species into trait‐based models, for improving our understanding of climate‐driven biological responses.
  相似文献   

20.
  1. The importance of flow‐related factors to benthic organisms, as well as the role of habitat conditions in shaping aquatic communities during low‐flow periods, have been recognised. Despite this, the preferences of macroinvertebrates to the ratio of lentic to lotic habitats at the reach scale have not been accurately quantified in most instances.
  2. Aquatic invertebrates and habitat features in a range of temporary rivers in Sardinia were investigated. The investigation focused on the flow‐related characteristics that contribute to defining the lentic–lotic condition of the river reaches. The relation of habitat features to benthic taxa distributions was assessed using multidimensional scaling. The main aim of the paper was to quantify the responses of taxa to the different lentic and lotic habitat conditions by applying hierarchical logistic regressions. Finally, taxon optima were aligned along the lentic–lotic gradient and the responses of different taxonomic groups compared.
  3. Unbroken waves and imperceptible flow were correlated with benthic taxa variability, suggesting local hydraulics and turbulence have a major role in regulating community composition. The overall lentic–lotic character of the river reaches was also clearly related to the benthic taxa distribution. More than 80% of taxa were significantly related to the lentic–lotic gradient, and an asymmetrical response curve was the predominant model.
  4. Benthic groups showed taxon optima clustered in different ranges of the lentic–lotic gradient. Odonata, Coleoptera, Hemiptera, and Mollusca preferred clearly lentic conditions. Diptera mainly ranged on the lotic side of the gradient, while Trichoptera were relatively uniformly distributed across the gradient. Ephemeroptera taxa clustered in intermediate lentic–lotic conditions, with two species preferring extremely lentic habitats. In general, optima converged at intermediate and extremely lentic conditions, presumably due, respectively, to the coexistence of different lentic and lotic features and to the highly diverse environmental characteristics under extremely lentic situations.
  5. These results support the conclusion that dissimilar ecological factors act on benthic taxa along the lentic–lotic range and species favouring different lentic–lotic conditions are subjected to pressures of different nature. This should not be ignored when defining species preferences and studying community structure or relationships between species in Mediterranean rivers, which cyclically vary their habitat composition. In addition, the uneven distribution of optima of different groups along the lentic–lotic gradient might affect macroinvertebrate metrics when assessing ecological status or establishing reference conditions under variable climatic conditions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号