首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although resveratrol, an active ingredient derived from grapes and red wine, possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. Here, we examined the molecular mechanisms of resveratrol and its interactive effects with TRAIL on apoptosis in prostate cancer PC-3 and DU-145 cells. Resveratrol inhibited cell viability and colony formation, and induced apoptosis in prostate cancer cells. Resveratrol downregulated the expression of Bcl-2, Bcl-XL and survivin and upregulated the expression of Bax, Bak, PUMA, Noxa, and Bim, and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Treatment of prostate cancer cells with resveratrol resulted in generation of reactive oxygen species (ROS), translocation of Bax to mitochondria and subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, Smac/DIABLO, and AIF) to cytosol, activation of effector caspase-3 and caspase-9, and induction of apoptosis. Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major proapoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer.  相似文献   

2.
We recently demonstrated that resveratrol induces caspase-dependent apoptosis in multiple cancer cell types. Whether apoptosis is also regulated by other cell death mechanisms such as autophagy is not clearly defined. Here we show that inhibition of autophagy enhanced resveratrol-induced caspase activation and apoptosis. Resveratrol inhibited colony formation and cell proliferation in multiple cancer cell types. Resveratrol treatment induced accumulation of LC3-II, which is a key marker for autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased resveratrol-mediated caspase activation and cell death in breast and colon cancer cells. Inhibition of autophagy by silencing key autophagy regulators such as ATG5 and Beclin-1 enhanced resveratrol-induced caspase activation. Mechanistic analysis revealed that Beclin-1 did not interact with proapoptotic proteins Bax and Bak; however, Beclin-1 was found to interact with p53 in the cytosol and mitochondria upon resveratrol treatment. Importantly, resveratrol depleted ATPase 8 gene, and thus, reduced mitochondrial DNA (mtDNA) content, suggesting that resveratrol induces damage to mtDNA causing accumulation of dysfunctional mitochondria triggering autophagy induction. Together, our findings indicate that induction of autophagy during resveratrol-induced apoptosis is an adaptive response.  相似文献   

3.

Background

We have previously shown that prostate cancer LNCaP cells are resistant to TRAIL, and downregulation of PI-3K/Akt pathway by molecular and pharmacological means sensitizes cells to undergo apoptosis by TRAIL and curcumin. The purpose of this study was to examine the molecular mechanisms by which resveratrol sensitized TRAIL-resistant LNCaP cells.

Results

Resveratrol inhibited growth and induced apoptosis in androgen-dependent LNCaP cells, but had no effect on normal human prostate epithelial cells. Resveratrol upregulated the expression of Bax, Bak, PUMA, Noxa, Bim, TRAIL-R1/DR4 and TRAIL-R2/DR5, and downregulated the expression of Bcl-2, Bcl-XL, survivin and XIAP. Treatment of LNCaP cells with resveratrol resulted in generation of reactive oxygen species, translocation of Bax and p53 to mitochondria, subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, AIF, Smac/DIABLO and Omi/HtrA2), activation of caspase-3 and caspase-9 and induction of apoptosis. The ability of resveratrol to sensitize TRAIL-resistant LNCaP cells was inhibited by dominant negative FADD, caspase-8 siRNA or N-acetyl cysteine. Smac siRNA inhibited resveratrol-induced apoptosis, whereas Smac N7 peptide induced apoptosis and enhanced the effectiveness of resveratrol.

Conclusion

Resveratrol either alone or in combination with TRAIL or Smac can be used for the prevention and/or treatment of human prostate cancer.  相似文献   

4.
Resveratrol, a naturally occurring phytoalexin, is known to induce apoptosis in multiple cancer cell types, but the underlying molecular mechanisms remain unclear. Here, we show that resveratrol induced p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated translocation of Bax to mitochondria where it underwent oligomerization to initiate apoptosis. Resveratrol treatment promoted interaction between Bax and XIAP in the cytosol and on mitochondria, suggesting that XIAP plays a critical role in the activation and translocation of Bax to mitochondria. This process did not involve p53 but required accumulation of Bim and t-Bid on mitochondria. Bax primarily underwent homo-oligomerization on mitochondria and played a major role in release of cytochrome c to the cytosol. Bak, another key protein that regulates the mitochondrial membrane permeabilization, did not interact with p53 but continued to associate with Bcl-xL. Thus, the proapoptotic function of Bak remained suppressed during resveratrol-induced apoptosis. Caspase-9 silencing inhibited resveratrol-induced caspase activation, whereas caspase-8 knockdown did not affect caspase activity, suggesting that resveratrol induces caspase-9-dependent apoptosis. Together, our findings characterize the molecular mechanisms of resveratrol-induced caspase activation and subsequent apoptosis in cancer cells.  相似文献   

5.
Ezrin belongs to the ERM (ezrin-radixin-moesin) protein family and has been demonstrated to regulate early steps of Fas receptor signalling in lymphoid cells, but its contribution to TRAIL-induced cell death regulation in adherent cancer cells remains unknown. In this study we report that regulation of FasL and TRAIL-induced cell death by ezrin is cell type dependant. Ezrin is a positive regulator of apoptosis in T-lymphoma cell line Jurkat, but a negative regulator in colon cancer cells. Using ezrin phosphorylation or actin-binding mutants, we provide evidence that negative regulation of death receptor-induced apoptosis by ezrin occurs in a cytoskeleton- and DISC-independent manner, in colon cancer cells. Remarkably, inhibition of apoptosis induced by these ligands was found to be tightly associated with regulation of ezrin phosphorylation on serine 66, the tumor suppressor gene WWOX and activation of PKA. Deficiency in WWOX expression in the liver cancer SK-HEP1 or the pancreatic Mia PaCa-2 cell lines as well as WWOX silencing or modulation of PKA activation by pharmacological regulators, in the colon cancer cell line SW480, abrogated regulation of TRAIL signalling by ezrin. Altogether our results show that death receptor pro-apoptotic signalling regulation by ezrin can occur downstream of the DISC in colon cancer cells.  相似文献   

6.
Resveratrol, a naturally occurring dietary compound with chemopreventive properties has been reported to trigger a variety of cancer cell types to apoptosis. Whether resveratrol shows any activity on human nasopharyngeal carcinoma (NPC) cells remained to be determined. The aim of this study was to investigate the effect and mechanism of resveratrol on human NPC cells. Treatment of resveratrol resulted in significant decrease in cell viability of NPC cell lines in a dose‐ and time‐dependent manner. A dose‐dependent apoptotic cell death was also measured by flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled resveratrol treatment resulted in a significant loss of mitochondrial transmembrane potential, release of cytochrome c, enhanced expression of Fas ligand (FasL), and suppression of glucose‐regulated protein 78 kDa (GRP78). These were followed by activation of caspases‐9, ‐8, ‐4, and ‐3, subsequently leading to DNA fragmentation and cell apoptosis. Furthermore, up‐regulation of proapoptotic Bax and down‐regulation of antiapoptotic Bcl‐2 protein were also observed. Taken together, resveratrol induces apoptosis in human NPC cells through regulation of multiple apoptotic pathways, including death receptor, mitochondria, and endoplasmic reticulum (ER) stress. Resveratrol can be developed as an effective compound for human NPC treatment. J. Cell. Physiol. 226: 720–728, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Based on our recent findings that resveratrol, a natural plant polyphenol found in red grape skins as well as other food products, induces apoptosis via a caspase-independent intrinsic pathway in human lung adenocarcinoma cells, this study is designed to explore whether SB203580, a p38 inhibitor, potentiates the resveratrol-induced apoptosis of human lung adenocarcinoma (A549) cells. We found that pretreatment with SB203580 enhanced the resveratrol-induced apoptosis by accelerating the intrinsic apoptotic pathway including Bax activation, loss of mitochondrial membrane potential, and activation of both caspase-9 and -3. Although treatment with resveratrol alone did not induce caspase-8 activation, cotreatment with both SB203580 and resveratrol not only enhanced FasL cleavage but also activated caspase-8, indicating that the extrinsic apoptotic pathway may be involved in the synergistic effect. Collectively, we for the first time demonstrate that SB203580 synergistically enhances the resveratrol-induced apoptosis by accelerating Bax-mediated intrinsic pathway and initiating extrinsic pathway, suggesting a possible alternative therapeutic strategy for human lung cancer.  相似文献   

8.
Resveratrol (trans-3,4,5’ –trihydroxystilbene) is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3) was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS) generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.  相似文献   

9.
10.
Cancer cell sensitization to fas-mediated apoptosis by sodium butyrate   总被引:9,自引:0,他引:9  
Cancer cells often resist Fas-mediated apoptosis even when the Fas receptor is expressed at the cell surface. We show here that human and rat colon cancer cells undergo massive apoptosis when they are exposed to soluble Fas ligand in the presence of sodium butyrate, an agent that induces by itself only a low rate of apoptosis. Sodium butyrate potentiates Fas-dependent apoptosis in seven out of eight colon cancer cell lines. Sodium butyrate does not increase Fas receptor cell surface expression and does not modify cell levels of Bcl-2, Bcl-xL, Bcl-xS and Bax. Sodium butyrate also induces tumor cell sensitization to the apoptotic effect of the combination of TNF-alpha and IFN-gamma, but it does not modify the level of the FADD/Mort1 adaptator molecule, at the connection between Fas- and TNF-dependent apoptosis pathways. Because the clinical toxicity of butyrate is low, its ability to enhance Fas-signal delivery in cancer cells could be of therapeutic interest.  相似文献   

11.
Many tumor cell types are sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Incubation of TRAIL-sensitive cells with TRAIL invariably leads to resistant survivors even when high doses of TRAIL are used. Because the emergence of resistance to apoptosis is a major concern in successful treatment of cancer, and TRAIL survivors may contribute to therapeutic failure, we investigated potential resistance mechanisms. We selected TRAIL-resistant SW480 human colon adenocarcinoma cells by repeatedly treating them with high and/or low doses of TRAIL. The resulting TRAIL-resistant clones were not cross-resistant to Fas or paclitaxel. Expression of modulators of apoptosis was not changed in the resistant cells, including TRAIL receptors, cFLIP, Bax, Bid, or IAP proteins. Surprisingly, we found that DISC formation was deficient in multiple selected TRAIL-resistant clones. DR4 was not recruited to the DISC upon TRAIL treatment, and caspase-8 was not activated at the DISC. Although total cellular DR4 mRNA and protein were virtually identical in TRAIL-sensitive parental and TRAIL-resistant clones, DR4 protein expression on the cell surface was essentially undetectable in the TRAIL-resistant clones. Moreover, exogenous DR4 and KILLER/DR5 were not properly transported to the cell surface in the TRAIL-resistant cells. Interestingly, TRAIL-resistant cells were resensitized to TRAIL by tunicamycin pretreatment, which increased cell surface expression of DR4 and KILLER/DR5. Our data suggest that tumor cells may become resistant to TRAIL through regulation of the death receptor cell surface transport and that resistance to TRAIL may be overcome by the glycosylation inhibitor/endoplasmic reticulum stress-inducing agent tunicamycin.  相似文献   

12.
Since cellular uptake of PEG [poly(ethylene glycol)]-liposomal L-OHP (oxaliplatin) induces bioactive changes in CRC (colorectal cancer), we have investigated its apoptotic effect and anticancer mechanism. Human CRC SW480 cells were treated with PEG-liposomal L-OHP and a caspase-8 inhibitor [Z-IETD-FMK (benzyloxycarbonyl-Ile-Glu-Thr-dl-Asp-fluoromethylketone)]. Apoptosis was measured by FCM (flow cytometry) and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay. Expression of Fas/FasL and cytochrome c was detected using FCM and an immunofluorescence assay. Expression of caspase-8, Bid, caspase-9, caspase-7 and activated caspase-3 (P17) was examined by Western blot analyses. The results indicated that PEG-liposomal L-OHP (28 μg/ml L-OHP) induced marked apoptosis in SW480 cells compared with 28 μg/ml free L-OHP. The expression levels of Fas, FasL, cytochrome c, caspase-9, caspase-7 and activated caspase-3 proteins were up-regulated, with a corresponding increase in apoptosis; however, expression of caspase-8 and Bid were down-regulated as apoptosis increased. When cells were treated with Z-IETD-FMK, apoptosis was inhibited, but there was little impact on the expression of Fas, FasL, cytochrome c, Bid, caspase-9, caspase-7 and activated caspase-3. These findings indicate that PEG-liposomal L-OHP enhances the anticancer potency of the chemotherapeutic agent; moreover, Fas/FasL and caspase-8 signalling pathways play a key role in mediating PEG-liposomal L-OHP-induced apoptosis.  相似文献   

13.
Swainsonine (1, 2, 8-trihyroxyindolizidine, SW), a natural alkaloid, has been reported to exhibit anti-cancer activity on several mouse models of human cancer and human cancers in vivo. However, the mechanisms of SW-mediated tumor regression are not clear. In this study, we investigated the effects of SW on several human lung cancer cell lines in vitro. The results showed that SW significantly inhibited these cells growth through induction of apoptosis in different extent in vitro. Further studies showed that SW treatment up-regulated Bax, down-regulated Bcl-2 expression, promoted Bax translocation to mitochondria, activated mitochondria-mediated apoptotic pathway, which in turn caused the release of cytochrome c, the activation of caspase-9 and caspase-3, and the cleavage of poly (ADP-ribose) polymerase (PARP), resulting in A549 cell apoptosis. However, the expression of Fas, Fas ligand (FasL) or caspase-8 activity did not appear significant changes in the process of SW-induced apoptosis. Moreover, SW treatment inhibited Bcl-2 expression, promoted Bax translocation, cytochrome c release and caspase-3 activity in xenograft tumor cells, resulting in a significant decrease of tumor volume and tumor weight in the SW-treated xenograft mice groups in comparison to the control group. Taken together, this study demonstrated for the first time that SW inhibited A549 cancer cells growth through a mitochondria-mediated, caspase-dependent apoptotic pathway in vitro and in vivo.  相似文献   

14.
Fas binding to Fas‐associated death domain (FADD) activates FADD–caspase‐8 binding to form death‐inducing signaling complex (DISC) that triggers apoptosis. The Fas–Fas association exists primarily as dimer in the Fas–FADD complex, and the Fas–FADD tetramer complexes have the tendency to form higher order oligomer. The importance of the oligomerized Fas–FADD complex in DISC formation has been confirmed. This study sought to provide structural insight for the roles of Fas death domain (Fas DD) binding to FADD and the oligomerization of Fas DD–FADD complex in activating FADD–procaspase‐8 binding. Results show Fas DD binding to FADD stabilized the FADD conformation, including the increased stability of the critical residues in FADD death effector domain (FADD DED) for FADD–procaspase‐8 binding. Fas DD binding to FADD resulted in the decreased degree of both correlated and anticorrelated motion of the residues in FADD and caused the reversed correlated motion between FADD DED and FADD death domain (FADD DD). The exposure of procaspase‐8 binding residues in FADD that allows FADD to interact with procaspase‐8 was observed with Fas DD binding to FADD. We also observed different degrees of conformational and motion changes of FADD in the Fas DD–FADD complex with different degrees of oligomerization. The increased conformational stability and the decreased degree of correlated motion of the residues in FADD in Fas DD–FADD tetramer complex were observed compared to those in Fas DD–FADD dimer complex. This study provides structural evidence for the roles of Fas DD binding to FADD and the oligomerization degree of Fas DD–FADD complex in DISC formation to signal apoptosis. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.  相似文献   

16.
In T lymphocytes, the role of Akt in regulating Fas/Fas ligand (FasL)-mediated apoptotic signaling and death is not clearly understood. In this study, we observed that inhibition of Akt causes enhanced expression of FasL mRNA and protein and increased death-inducing signaling complex (DISC) formation with Fas-associated death domain (FADD) and procaspase-8 recruitment. Also, caspase-8 was activated at the DISC with accompanying decrease in c-FLIPs expression. FasL neutralizing antibody significantly decreased apoptotic death in the Akt-inhibited T cells. Additionally, Akt inhibition-induced Fas signaling was observed to link to the mitochondrial pathway via Bid cleavage. Further, inhibition of caspase-8 activity effectively blocked the loss of mitochondrial membrane potential and DNA fragmentation, suggesting that DISC formation and subsequent caspase-8 activation are critical initiating events in Akt inhibition-induced apoptotic death in T lymphocytes. These data demonstrate yet another important survival function governed by Akt kinase in T lymphocytes, which involves the regulation of FasL expression and consequent apoptotic signaling.  相似文献   

17.
Two ovarian cancer cell lines named NOS4 and SKOV-3 have been shown to have different sensitivities to a cytotoxic anti-Fas antibody, CH-11. Although both cell lines express Fas molecules on the cell surfaces at the same intensities, apoptosis is induced by CH-11 in NOS4 cells but not in SKOV-3 cells. In this study, the different apoptosis-sensitivities of these cells were assessed. Both cell lines express almost the same levels of FADD, RIP, c-FLIP, FAP-1, Bax, Bcl-2 and Bcl-XL. Evidence of caspase-8, caspase-9 and caspase-3 activation and of cleavage of PARP and Bid was obtained in NOS4 cells but not in SKOV-3 cells. When triggered by FasL protein, DNA fragmentation and caspase-8 activation were observed in SKOV-3 cells, though they were not as clear as in NOS4 cells. All the anti-Fas antibody-mediated signals for apoptosis induction in NOS4 cells were completely blocked by a caspase-8-specific inhibitor, Z-IETD-FMK. These results indicate that the different sensitivities to the anti-Fas antibody are solely dependent on the activation of caspase-8, which could be influenced by yet unknown qualitative or quantitative abnormalities in molecules involved in DISC formation.  相似文献   

18.
Fas, a member of the tumor necrosis factor receptor family, can upon ligation by its ligand or agonistic antibodies trigger signaling cascades leading to cell death in lymphocytes and other cell types. Such signaling cascades are initiated through the formation of a membrane death-inducing signaling complex (DISC) that includes Fas, the Fas-associated death domain protein (FADD) and caspase-8. We report here that a considerable fraction of Fas is constitutively partitioned into sphingolipid- and cholesterol-rich membrane rafts in mouse thymocytes as well as the L12.10-Fas T cells, and Fas ligation promotes a rapid and specific recruitment of FADD and caspase-8 to the rafts. Raft disruption by cholesterol depletion abolishes Fas-triggered recruitment of FADD and caspase-8 to the membrane, DISC formation and cell death. Taken together, our results provide the first demonstration for an essential role of membrane rafts in the initiation of Fas-mediated cell death signaling.  相似文献   

19.
Fas, upon cross-linking with Fas ligand (FasL) or Fas agonistic antibody, transduces apoptotic yet also proliferative signals, which have been implicated in tumor pathogenesis. In this study, we investigated the molecular mechanisms that control Fas-mediated signaling in glioma cells. Fas agonistic antibody, CH-11, induced apoptosis in sensitive glioma cells through caspase-8 recruitment to the Fas-mediated death-inducing signaling complex (DISC) where caspase-8 was cleaved to initiate apoptosis through a systematic cleavage of downstream substrates. In contrast, CH-11 stimulated cell growth in resistant glioma cells through recruitment of c-FLIP (cellular Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme (FLICE)-inhibitory protein) to the Fas-mediated DISC. Three isoforms of long form c-FLIP were detected in glioma cells, but only the phosphorylated isoform was recruited to and cleaved into a p43 intermediate form in the Fas-mediated DISC in resistant cells. Calcium/calmodulin-dependent protein kinase II (CaMK II) activity was up-regulated in resistant cells. Treatment of resistant cells with the CaMK II inhibitor KN-93 inhibited CaMK II activity, reduced c-FLIP expression, inhibited c-FLIP phosphorylation, and rescued CH-11 sensitivity. Transfection of CaMK II cDNA in sensitive cells rendered them resistant to CH-11. These results indicated that CaMK II regulates c-FLIP expression and phosphorylation, thus modulating Fas-mediated signaling in glioma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号