首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qualitative resistance to Melampsora larici-populina leaf rust inherited from North American species Populus deltoides did not allow for durable control of this pathogen in interspecific hybrid cultivars. Despite significant levels of strain-specificity, quantitative resistance would exert lower selection pressures on the pathogen populations, and hence could be more durable. Previous studies restricted to a large P. × interamericana (i.e., P. deltoides × Populus trichocarpa) F1 family revealed that the presence of R1, a segregating defeated qualitative resistance gene inherited from P. deltoides, had major beneficial effects on quantitative resistance. The present study was based on 14 F1 families from a 4 × 5 P. deltoides × P. trichocarpa factorial mating design where at least four defeated qualitative resistances segregate 1:1. Even though quantitative resistance assessments were conducted in the laboratory with a M. larici-populina strain able to overcome these qualitative resistances, their presence had a significant effect on the mean level and on the genetic variability for quantitative resistance. One unprecedented result is the identification of a defeated qualitative resistance which presence is associated with lower levels of quantitative resistance. Possible inferences on the nature of the genetic relationship between both resistance types are discussed.  相似文献   

2.
Summary The inheritance of chloroplast (cp) DNA was examined in F1 hybrid progenies of two Populus deltoides intraspecific controlled crosses and three P. deltoides × P. nigra and two P. deltoides × P. maximowiczii interspecific controlled crosses by restriction fragment analysis. Southern blots of restriction digests of parental and progeny DNAs were hybridized to cloned cpDNA fragments of Petunia hybrida. Sixteen enzymes and five heterologous cpDNA probes were used to screen restriction fragment polymorphisms among the parents. The mode of cpDNA inheritance was demonstrated in progenies of P. deltoides × P. nigra crosses with 26 restriction fragment polymorphisms of cpDNA differentiating P. deltoides from P. nigra, as revealed by 12 enzyme-probe combinations, and in progenies of P. deltoides × P. maximowiczii crosses with 12 restriction fragment polymorphisms separating P. deltoides from P. maximowiczii, as revealed by 7 restriction enzyme-probe combinations. In all cases, F1 offspring of P. deltoides × P. nigra and P. deltoides × P. maximowiczii crosses had cpDNA restriction fragments of only their maternal P. deltoides parent. The results clearly demonstrated uniparental-maternal inheritance of the chloroplast genome in interspecific hybrids of P. deltoides with P. nigra and P. maximowiczii. Intraspecific P. deltoides hybrids also had the same cpDNA restriction fragments as their maternal parent. Maternal inheritance of the chloroplast genome in Populus is in agreement with what has been observed for most other angiosperms.  相似文献   

3.
4.
Distortion of expected Mendelian segregation ratios, commonly observed in many plant taxa, has been detected in an experimental three-generation inbred pedigree of Populus founded by interspecific hybridization between P. trichocarpa and P. deltoides. An RFLP linkage map was constructed around a single locus showing severe skewing of segregation ratio against F2 trees carrying the P. trichocarpa allele in homozygous form. Several hypotheses for the mechanism of segregation distortion at this locus were tested, including directional chromosome loss, segregation of a pollen lethal allele, conflicts between genetic factors that isolate the parental species, and inbreeding depression as a result of genetic load. Breeding experiments to produce inbred and outcrossed progenies were combined with PCR-based detection of RFLPs to follow the fate of the deficient allele throughout embryo and seedling development. A recessive lethal allele, lth, inherited from the P. trichocarpa parent, was found to be tightly linked to the RFLP marker locus POP1054 and to cause embryo and seedling mortality. Heterozygotes (lth/+) appear to be phenotypically normal as embryos, seedlings, and young trees.Abbreviations RFLP restriction fragment length polymorphism - PCR polymerase chain reaction - STS sequence-tagged site - SDS sodium dodecyl sulfate  相似文献   

5.
We have evaluated three DNA-based marker types for linkage map construction in Populus: RFLPs detected by Southern blot hybridization, STSs detected by a combination of PCR and RFLP analysis, and RAPDs. The mapping pedigree consists of three generations, with the F1 produced by interspecific hybridization between a P. trichocarpa female and a P. deltoides male. The F2 generation was made by inbreeding to the maximum degree permitted by the dioecious mating system of Populus. The applicability of STSs and RAPDs outside the mapping pedigree has been investigated, showing that these PCR-based marker systems are well-suited to breeding designs involving interspecific hybridization. A Populus genome map (343 markers) has been constructed from a combination of all three types. The length of the Populus genome is estimated to be 2400–2800 cM.Abbreviations RFLP restriction fragment length polymorphism - STS sequence-tagged site - PCR polymerase chain reaction - RAPD random amplified polymorphic DNA  相似文献   

6.
Summary While constructing a genetic linkage map of a hybrid poplar genome (Populus trichocarpa x P. deltoides), we identified several restriction fragment length polymorphismus (RFLPs) for which the parental trees are heterozygous. Although 8 of the 11 F1 hybrid offspring inherited, as expected, single RFLP alleles from each parent, 3 F1 trees in the mapping pedigree inherited both maternal alleles along with a single paternal allele at some loci. Aneuploidy or polyploidy in these 3 F1 trees due to partial or complete nondisj unction during female gametogenesis is the simplest explanation for this finding. Of the 3 f1 offspring with supernumerary RFLP alleles 2 have triploid nuclear DNA contents as measured by fluorescence flow cytometry; the 3rd F1 with supernumerary alleles has a sub-triploid nuclear DNA content and is probably aneuploid. Among the tri/aneuploid hybrids, leaf quantitative traits either are skewed toward those values characteristic of the P. trichocarpa female parent (adaxial stomate density, petiole length: blade length ratio; abaxial color) or show transgressive variation (epidermal cell size). Abaxial leaf color was used to screen a large population of P. trichocarpa x P. deltoides hybrids for further evidence of tri/aneuploidy. In each case where a white abaxial leaf surface was observed and the nuclear DNA content measured, the hybrid proved to be tri/aneuploid. All sexually mature female triploids examined were sterile, although the inflorescences completed their development in the absence of embryo formation. The (probably) aneuploid F1 hybrid is a fertile female. Of 15 female P. trichocarpa parents used in crosses to P. deltoides, 10 produced one or more tri/aneuploid hybrid offspring. In an intraspecific cross using a P. trichocarpa female that had produced triploid hybrids with five different P. deltoides males, no tri/aneuploid offpsring were found.  相似文献   

7.
The tandemly repeated multigene families encoding 18S and 25S rRNAs were studied at the restriction enzyme level inPopulus alba L.,Populus deltoides Bartr. exMarsh.,Populus trichocarpa Torr. & Gray and in the hybrids between the last two mentioned species. The analysis of single and double digestion with EcoRI, BamHI, XbaI, and SstI endonucleases showed the presence of single repetitive unit types of 12.25 and 11.75kb inP. alba andP. trichocarpa, respectively.P. deltoides showed two rDNA gene types having the same length (12.25Kb) but different nucleotide sequence in the IGS. The rDNAs genes ofP. deltoides andP. triochocarpa are inherited codominantly in their hybrids.  相似文献   

8.
Genetic improvement and hybridization in the Populus genus have led to the development of genotypes exhibiting fast growth, high rooting ability and disease resistance. However, while large biomass production is important for bioenergy crops, efficient use of resources including water is also important in sites lacking irrigation and for maintaining ecosystem water availability. In addition, comparison of water use strategies across a range of growth rates and genetic variability can elucidate whether certain strategies are shared among the fastest growing and/or most water use efficient genotypes. We estimated tree water use throughout the second growing season via sapflow sensors of 48 genotypes from five Populus taxa; P. deltoides W. Bartram ex Marshall × P. deltoides (D × D), P. deltoides × P. maximowiczii A. Henry (D × M), P. deltoides × P. nigra L. (D × N), P. deltoides × P. trichocarpa Torr. & Gray (D × T) and P. trichocarpa × P. deltoides (T × D) and calculated average canopy stomatal conductance (GS). We regressed GS and atmospheric vapor pressure deficit (VPD) wherein the slope of the relationship represents stomatal sensitivity to VPD. At the end of the second growing season, trees were harvested, and their dry woody biomass was used to calculate whole tree water use efficiency (WUET). We found that D × D and D × M genotypes exhibited differing water use strategies with D × D genotypes exhibiting high stomatal sensitivity while retaining leaves while D × M genotypes lost leaf area throughout the growing season but exhibited low stomatal sensitivity. Across measured taxa, biomass growth was positively correlated with WUET, and genotypes representing each measured taxa except D × N and T × D had high 2-year dry biomass of above 6 kg/tree. Overall, these data can be used to select Populus genotypes that combine high biomass growth with stomatal sensitivity and WUET to limit the negative impacts of bioenergy plantations on ecosystem water resources.  相似文献   

9.
Summary Interspecific pollen competition among Populus deltoides, P. nigra and P. maximowiczii in fertilizing P. deltoides ovules was studied by using a pollen mixture technique, allozymes and leaf morphology. The frequencies of F1 seedlings of different paternities in pollen-mix crosses showed highly significant (P<0.01) departures from the 11 ratio expected if pollen selection was random. P. deltoides pollen was the most competitive. The mean percentages of F1 seedlings of P. deltoides paternity in crosses with pollen mixes P. deltodes + P. nigra, P. deltoides + P. maximowiczii, and P. deltoides + P. nigra + P. maximowiczii were 95.0, 92.5, and 84.8, respectively. P. maximowiczii pollen was more competitive than P. nigra pollen, which was at a selective disadvantage. An average of 83.6% of F1 progenies of the eight crosses with P. nigra + P. maximowiczii pollen showed P. maximowiczii paternity. Also, in four crosses with P. deltoides + P. nigra + P. maximowiczii pollen, the relative proportion of P. deltoides × P. maximowiczii seedlings (13.4%) was higher than that of P. deltoides × P. nigra seedlings (1.8%). Pollen proportions in the pollen mixes and pollen size did not significantly affect the competitive ability of the pollen. The relative pollen competitive ability indicated reproductive affinities among the species.  相似文献   

10.
 A segregated F2 progeny derived from two highly divergent poplar species, Populus trichocarpa and P. deltoides, was used to evaluate the genetic basis of canopy structure and function in a clonally replicated plantation. The QTLs of large effect on growth, branch, and leaf traits were identified using the Populus linkage map constructed by 343 molecular markers. Stem height and harvest index appeared to be under the control of few QTLs with major effects, whereas variation in stem basal area, volume, and dry weight might be due to many more QTLs. Branch and leaf traits on sylleptics tended to include more QTLs with major effects than those on proleptics. In the environment where the pedigree was tested, sylleptics were very frequent in the P. trichocarpa parent but rare in the P. deltoides parent. For sylleptic traits for which two or more QTLs were identified, however, increases in the trait values were conditioned not only by the P. trichocarpa alleles, but also by the P. deltoides alleles. Similar findings were found for traits on proleptics that were differently expressed between the two parents. For both sylleptic and proleptic branch types, dominance (ranging from partial to over) was observed. The QTLs on specific linkage groups were found to be responsible for relationships between stem growth and its developmental components. Similar QTL clustering was also observed for morphological or developmental integration in poplar, i.e., traits with similar developmental origins are more strongly correlated with one another than traits with different developmental origins. The implications of these molecular genetic results for ideotype breeding of poplars are discussed. Received: 15 July 1997/Accepted: 19 August 1997  相似文献   

11.
Abstract Previous work with clones of Populus trichocarpa demonstrated that the water vapour conductance of leaves from well-watered cuttings of this species does not decline with loss of turgor from the bulk leaf. In the present study, stomatal responses to water potential in Populus were examined with detached epidermal strips. Stomata in epidermal strips from well-watered plants of P. trichocarpa did not close at low water potentials which led to plasmolysis of the guard cells. In contrast, stomata of P. deltoides and a P. trichocarpa×deltoides hybrid closed when the guard cells lost turgor. A period of water stress preconditioning resulted in modified stomatal responses in P. trichocarpa such that stomata of stressed and re-watered plants nearly closed when guard cell turgor was lost.  相似文献   

12.
Species‐specific microsatellite markers were obtained for the unambiguous recognition of five poplar species of ecological and commercial importance to eastern North America: the native species Populus balsamifera and Populus deltoides, the exotic species Populus maximowiczii, Populus nigra, Populus trichocarpa and their interspecific hybrids. Forty‐four of 71 tested primer pairs amplified simple sequence repeat (SSR) loci for all five taxa. Six of these loci showed non‐overlapping allelic diversity between species, including fixed differences. Together, they were useful to identify unambiguously the five taxa and to validate parental contributions in a group of hybrid progeny. These markers will be invaluable to detect gene flow from plantations of exotic poplar into adjacent stands of native species and between the two potentially hybridizing native species P. balsamifera and P. deltoides.  相似文献   

13.
The aim of this study was to determine the existence of a genetic basis for the ability to form ectomycorrhiza on a model angiosperm tree (Populus, poplar). Parental clones and 18 progeny from a controlled interspecific cross between Populus deltoides and Po- pulus trichocarpa were grown in a glasshouse and inoculated with mycelium of the ectomycorrhizal fungus Laccaria bicolor. Three months after inoculation, the percentage of mycorrhizal root tips was determined for each inoculated plant. The data indicate variability in the ability to form ectomycorrhizas among the F1 progeny, including individual progeny which are different to either parent. This suggests a genetic basis for mycorrhiza formation. Accepted: 6 November 2000  相似文献   

14.
The phytochrome family of signal-transducing photoreceptors provides plants with the capacity to perceive variations in the relative fluxes of red (R) and far-red (FR) radiation. This capacity has been proposed to be of ecological value in the perception of the proximity of neighbouring plants and the consequent induction of shade avoidance responses. The work reported here has evaluated this potential by determining quantitatively the effect of neighbour proximity on the growth of canopies of Populus trichocarpa×deltoides‘Beaupré’ trees, and relating the measured variables to the long-term vectoral radiation quality inside each canopy. The spectral distribution of radiation inside four canopies of Populus trichocarpa×deltoides‘Beaupre’ of different densities was monitored throughout the growing season. Spectral distributions inside the canopies were measured in 10° wedges at different heights and angles. The results are presented as PFD over 400–700 nm (PFD400–700) and PFD over 400–800 nm (PFD400–700). Results are also presented for the calculated phytochrome photoequilibrium (Pfr/P) and red:far-red ratio (R:FR). Data are presented as in-canopy angular and height profiles, and as diurnal and seasonal variations. PFD400–700 and Pfr/P were found to be reduced inside each canopy, the reduction being greatest in the most dense canopy, and least in the most open canopy. At any height within each canopy, calculated Pfr/P decreased linearly with time throughout the growing season, until leaf senescence began. The reduction was greater in the denser canopies and was found to be similar for three consecutive field seasons. Linear relationships were found between plant stem growth rate, plant spacing and Pfr/P calculated from radiation propagated approximately horizontally within the canopies. The findings support the role of phytochrome in proximity perception in the natural environment and provide a quantitative basis for investigating the competitive interactions between plants growing in dense stands. The hypothesis is proposed that the dynamics of developing or regenerating canopies can be accounted for on the basis of phytochrome-mediated perception of the proximity of neighbouring plants.  相似文献   

15.
Ribosomal DNA genes fromP. deltoides have been cloned and specific sequences of the 25 S and 18 S rDNA region, labelled by digoxigenin, have been used to determine the rDNA structure ofPopulus tremula, P. fremontii, P. maximowiczii, P. yunnanensis, P. nigra, P. wislizenii, P. alba. The restriction maps of the coding region appeared to be similar among the examined species and with those ofP. deltoides andP. trichocarpa, reported in a previous paper. Inter- and intraspecific variation in rDNA repeat unit length have been revealed after EcoRI digestions. SstI and XbaI restriction sites have been found at different positions in the IGS of some species. The polymorphic fragments generated by SstI digestion allowed the identification of the hybrid origin of some genotypes. The number of rDNA genes in the genome ofP. deltoides has been estimated to be about 2 000 copies. Finally, the usefulness of these studies inPopulus spp. taxonomy and forestry genetics is discussed.Ribosomal RNA gene structure in somePopulus spp. (Salicaceae) and their hybrids 2.  相似文献   

16.
Three endophytic yeast, one isolated from stems of wild cottonwood (Populus trichocarpa), two from stems of hybrid poplar (P. trichocarpa × Populus deltoides), were characterized by analyzing three ribosomal genes, the small subunit (18S), internal transcribed spacer (ITS), and D1/D2 region of the large subunit (26S). Phenotypic characteristics of the yeast isolates were also obtained using a commercial yeast identification kit and used for assisting the species identification. The isolate from wild cottonwood was identified to be closest to species Rhodotorula graminis. The two isolates from hybrid poplar were identified to be species Rhodotorula mucilaginosa. In addition, the three yeast isolates were observed to be able to produce indole-3-acetic acid (IAA), a phytohormone which can promote plant growth, when incubated with l-tryptophan. To our knowledge, the yeast strains presented in this study were the first endophytic yeast strains isolated from species of Populus.  相似文献   

17.
A positional cloning strategy is being implemented in Populus for the isolation of the dominant MXC3 allele, which confers resistance to poplar leaf rust caused by Melampsora×columbiana (pathotype 3). AFLP markers were used to saturate the chromosomal region around the MXC3 locus in a large (n=1,902) Populus trichocarpa×P. deltoides (T×D) mapping pedigree segregating 1:1 for rust resistance and susceptibility. The high-resolution linkage map developed around the MXC3 locus contains 19 AFLP markers and spans a genetic distance of 2.73 cM. Of the 19 AFLP markers, seven were found to co-segregate with the locus. One co-segregating AFLP marker, CCG.GCT_01, was converted to an STS marker (BVS1) and used to identify a physical contig of overlapping BAC clones from the MXC3 region. Genetic and physical mapping of markers isolated from the BAC contig failed to delimit the MXC3 locus within a 300-kb interval defined by the overlapping BAC clones. This result indicates a >25-fold reduction in recombination frequency in the MXC3 region compared to the average rate of recombination for the Populus genome. Received: 8 December 2000 / Accepted: 1 March 2001  相似文献   

18.
为了解甘蔗(Saccharum)与斑茅(Erianthus arundinaceus)杂交后代作为抗病亲本的利用价值,通过特异引物PCR鉴定出78份甘蔗与斑茅杂交BC_1真实杂种;通过人工接种花叶病毒和黑穗病菌,初步评价了甘蔗和斑茅杂交BC_1的抗病表现。结果表明,甘蔗和斑茅杂交BC_1的抗花叶病具有普遍性,而黑穗病抗性则出现分离。初步筛选出BC_1无性系YCE01-48、YCE01-71、YCE01-105、YCE01-125、YCE02-184和YCE01-118可同时抗花叶病和黑穗病,有望成为甘蔗杂交利用的高抗病源亲本。  相似文献   

19.
In their native riparian zones (floodplains), Populus deltoides (prairie cottonwood) and P. fremontii (Fremont cottonwood) commonly experience substantial branch die-back. These trees occur in semi-arid areas of North America and unexpectedly given the dry regions, they are exceptionally vulnerable to xylem cavitation, drought-induced air embolism of xylem vessels. We propose that the vulnerability to cavitation and branch die-back are physiologically linked; drought-induced cavitation underlies branch die-back that reduces transpirational demand enabling the remaining shoot to maintain a favorable water balance. This proposal follows field observation along various western North American rivers as precocious branch senescence, the yellowing and death of leaves on particular branches during mid- to late summer, was common for P. deltoides and P. fremontii during hot and dry periods of low stream-flow. Branches displaying precocious senescence were subsequently dead the following year. The proposed association between cavitation, precocious senescence and branch die-back is also supported by experiments involving external pressurization of branches to about 2.5 MPa with a branch collar or through an adjacent cut-branch. The treatments induced xylem cavitation and increased leaf diffusive resistance (stomatal closure) that was followed by leaf senescence and branch death of P. deltoides. P. trichocarpa (black cottonwood) appeared to be less affected by the pressurization treatment and this species as well P. angustifolia (narrowleaf cottonwood) and P. balsamifera (balsam poplar) seldom display the patchy summer branch senescence typical of P. deltoides and P. fremontii. ’Branch sacrifice’ describes this cavitation-associated senescence and branch die-back that may provide a drought adaptation for the prairie and Fremont cottonwoods. Received: 13 May 1999 / Accepted: 4 November 1999  相似文献   

20.
Soil acidity and aluminum (Al) toxicity are major factors limiting crop yield and forest productivity worldwide. Hybrid poplar (Populus spp.) was used as a model to assess genotypic variation in Al resistance and physiological stress responses to Al in a woody tree species. Eight hybrid crosses of P. trichocarpa, P. deltoides and P. nigra were exposed to Al in solution culture. Resistance to Al varied by genotype and hybrid cross, with P. trichocarpa × P. deltoides crosses being most resistant, P. trichocarpa × P. nigra being intermediate and P. deltoides × P. nigra being most sensitive to Al. Total root Al accumulation was not a good indicator of Al resistance/sensitivity. However, the partitioning of Al into apoplastic and symplastic fractions indicated that differences in sensitivity among genotypes were associated with Al uptake into the symplasm. Aluminum treatment increased callose and pectin concentrations of root tips in all genotypes, but more prominently in Al sensitive genotypes/hybrids. In Al sensitive genotypes, higher levels of symplastic Al accumulation correlated with elevated concentrations of citrate, malate, succinate or formate in root tips, whereas organic acid accumulation was not as pronounced in Al resistant genotypes. These findings suggest that exclusion of Al from the symplast is associated with Al resistance. Further screening of Al tolerant poplar genotypes could yield successful candidates to be utilized for sustainable reforestation/reclamation and carbon sequestration projects where soil acidity may limit tree growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号