首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor I (IGF-I) is a 70 amino acid growth-promoting polypeptide whose sequence and functions have been highly conserved among mammals. As an initial step in defining the role of IGF-I in other vertebrate species, we have isolated and characterized an IGF-I cDNA from the chicken. This cDNA encodes a 153 amino acid primary translation product which resembles in structure and sequence the IGF-IA protein of mammals. There is strong amino acid conservation between chicken and mammalian IGF-I throughout the entire protein. Sixty of 70 amino acids are identical in mature IGF-I among the chicken, rat, and human peptides, with five differences being localized to the C domain, and two to the D region. A comparable degree of amino acid identity is found in the COOH-terminal extension peptide (28/35 residues). At the NH2-terminus, where there is more amino acid divergence (32/48 identities), the most 5'-AUG codon is the only methionine residue conserved among all three species, suggesting that it functions as the authentic translation initiation site, an observation supported by cell-free studies of biosynthesis and cotranslational proteolytic processing. The pattern of IGF-I gene expression appears to be simpler in chickens than in mammals, since a single predominant mRNA of 2.6 kilobases can be detected in liver polyadenylated RNA on Northern blots. In the chicken, as in rats and humans, IGF-I mRNA is synthesized in multiple tissues, including liver, brain, skeletal muscle, and heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
By means of a cloning strategy employing the polymerase chain reaction, we have isolated and characterized cDNAs for Xenopus laevis insulin-like growth factor I (IGF-I). These cDNAs encode a primary IGF-I translation product of 153 residues that demonstrates considerable amino acid sequence similarity with IGF-IA peptides from other species. Fifty-seven of 70 residues of the mature protein are identical among human, rat, chicken, and Xenopus IGF-I, while less amino acid conservation is found at the COOH-terminus (25/35 identities) or at the NH2-terminus (24/48 identities) of the precursor protein. Despite the lower degree of structural similarity at the NH2-terminus, in vitro studies of IGF-I biosynthesis and proteolytic processing support a conserved function for the atypically long 48 residue NH2-terminal signal sequence in directing the nascent IGF-I peptide through the secretory pathway. The 5'-untranslated region of Xenopus IGF-I mRNA matches the human, rat, and chicken sequences in greater than 90% of 279 nucleotides. IGF-I mRNAs from all four species encode a conserved upstream open reading frame of 14 amino acids starting 240-250 nucleotides 5' to the translation start site, suggesting a possible role for this region in modulating IGF-I gene expression. The X. laevis IGF-I gene is transcribed and processed into three mRNAs of 1.6, 2.1, and 3.0 kilobases in liver, and IGF-I mRNAs can be detected in liver, lung, heart, kidney, and peritoneal fat of adult animals. These studies demonstrate that both the IGF-I protein precursor and potential regulatory regions of IGF-I mRNA have been conserved during vertebrate evolution, and indicate that like several other polypeptide growth factors, IGF-I may be of fundamental importance in regulating specific aspects of growth and development in all vertebrates.  相似文献   

3.
4.
We have identified and characterized a novel human insulin-like growth factor I (IGF-I) precursor from the transplantable T61 human breast cancer xenograft and from normal liver. The mRNA encoding this precursor contains a 5'-untranslated region that is 83% identical to the corresponding region of a previously described variant rat IGF-I. The nucleotide sequence of the cloned cDNA predicts an IGF-IA protein precursor of 137 amino acids, including a 32 residue signal peptide, 70 amino acid IGF-I, and a 35 residue COOH-terminal extension or E peptide. The exon encoding this variant maps in the genome between IGF-I exons 1 and 2, in a similar location to the homologous rat exon 1a. The rat and human exons 1a are 59% identical over 1443 nucleotides, with DNA sequence conservation occurring in a mosaic pattern. Human IGF-I mRNAs encoding this novel exon are expressed in liver, T61 tumor cells, and in an ovarian carcinoma cell line, NIH OVCAR3. These studies demonstrate that as in the rat, the human IGF-I gene contains six exons that are variably processed into multiple IGF-I mRNAs. The mechanisms responsible for generating different IGF-I mRNAs thus appear to be conserved among mammalian species.  相似文献   

5.
Two classes of insulin-like growth factor I (IGF-I) cDNAs were isolated from an adult rat liver library using a human IGF-I cDNA probe. The two types of rat IGF-I cDNA differed by the presence or absence of a 52-base pair insert which altered the derived C-terminal amino acid sequence of the E peptide, but not the 3'-untranslated region or the sequence coding for the mature IGF-I protein. When probes derived from these cDNA clones were hybridized to Northern blots of rat mRNA, specific bands of 8.6, 2.1, and 1.0-1.4 kilobases were seen. Hybridization to poly(A)+ RNA from various tissues from GH-treated and control rats demonstrated an increase in IGF-I mRNA due to GH treatment in all tissues examined.  相似文献   

6.
7.
Rat insulin-like growth factor-I (IGF-I), a serum polypeptide with growth promoting activity, was isolated from rat serum by a combination of acid/ethanol extraction, affinity chromatography, and a series of reversed phase high performance liquid chromatography, cation exchange, and reversed phase. All peptide fragments produced by chymotrypsin digestion of reduced and carboxymethylated rat IGF-I were amino acid sequenced and compared with the sequence of human IGF-I. Three out of 70 of the rat amino acid residues differed from those of human IGF-I as follows: Asp20----Pro, Ser35----Ile and Ala67----Thr. Purified rat IGF-I cross-reacted with polyclonal anti-human IGF-I antibody 75% as compared to human IGF-I, but it cross-reacted only 3% with monoclonal anti-human IGF-I antibody. Thus, it is possible to monitor the metabolic fate of human IGF-I, when injected into rats, without interference by endogenous rat IGF-I. Rat IGF-I showed 65% activity in the radioreceptor, 28.6% activity in the lipogenesis and 22.5% activity in the free fatty acid release inhibition assays as compared to human IGF-I on a protein quantity basis.  相似文献   

8.
Insulin-like growth factor I (IGF-I) is a 70 amino acid (aa) protein that is structurally similar and functionally related to insulin. We have inserted a synthetic gene coding for human IGF-I into a Saccharomyces cerevisiae expression vector utilizing the MF alpha 1 promoter and pre-pro leader peptide. This vector directs the expression and secretion of native, biologically active growth factor. Cleavage of the pre-pro alpha factor leader sequence in vivo results in the secretion of a 70-aa recombinant IGF-I molecule with the native N-terminal glycine residue. Human IGF-I purified from yeast culture supernatant is equipotent to serum-derived IGF-I in inhibiting [125I]IGF-I binding to type-I IGF receptors and crude human serum-binding proteins. Recombinant IGF-I is also equipotent to human IGF-I in the stimulation of DNA synthesis in rat aortic smooth-muscle cells. In contrast, yeast recombinant IGF-I is less potent than serum-derived IGF-I in binding to type-2 IGF receptors. The ability to produce native, biologically active IGF-I in yeast will allow the elucidation of binding domains through the expression and characterization of specific structural analogs.  相似文献   

9.
Complementary DNAs encoding mouse liver insulin-like growth factor I (IGF-I) have been isolated and sequenced. Alternative RNA splicing results in the synthesis of two types of mouse IGF-I precursor that differ in the size and sequence of the COOH-terminal peptide. The sequences of the signal peptides, IGF-I moieties and the first 16 amino acids of the COOH-terminal peptides or E-domains of the two precursors are identical. The sequence difference results from the presence in preproIGF-IB mRNA of a 52 base insertion which introduces a 17 amino acid segment into the COOH-terminal peptide of preproIGF-IB and also causes a shift in the reading frame of the mRNA. As a consequence of this insertion, the COOH-terminal 19 and 25 amino acids of mouse preproIGF-IA and -IB, respectively, are different. The sequences of mouse and human preproIGF-IA are highly conserved and possess 94% identity. In contrast, the sequences of mouse and human preproIGF-IB are quite different in the region of the COOH-terminal peptide. A comparison of the sequences of mouse and human preproIGF-IB mRNA indicates that they are generated by different molecular mechanisms.  相似文献   

10.
Insulin-like growth factor I (IGF-I), a growth hormone (GH)-dependent growth factor exerts feedback regulation of GH by inhibiting GH gene expression. IGF-I inhibition of GH secretion is enhanced 3-5-fold in GC rat pituitary cells overexpressing the wild type 950Tyr human IGF-I receptor which autophosphorylates appropriately. To determine the critical amino acid sequence responsible for IGF-I signaling, insertion, deletion, and site-directed mutants were constructed to substitute for 950Tyr in exon 16 of the human IGF-I receptor beta-subunit transmembrane domain. All mutant transfectants bound IGF-I with a similar Kd to untransfected cells but had markedly increased (7-34-fold) IGF-I-binding sites. GH responsiveness to IGF-I was tested in mutant transfectants. Overexpressed site-directed and insertion mutant IGF-I receptors exhibited a modest suppressive effect on GH in response to the IGF-I ligand, similar to that observed in untransfected cells. Deletion mutant (IG-FIR delta 22) (amino acid 944-965) did not transduce the IGF-I signal to the GH gene. Site-directed and insertion mutants therefore did not enhance the IGF-I response of the endogenous rat receptor, unlike the 950Tyr wild type transfectants which enhanced the IGF-I signal. All mutant transfectants, except the deletion mutant, internalized radioactive ligand similarly to 950Tyr wild type transfectants. 950Tyr of the human IGF-I receptor is therefore required for IGF-I signal transduction in the pituitary somatotroph, but not for IGF-I-mediated internalization.  相似文献   

11.
12.
The insulin-like growth factors (IGF) constitute a family of proteins with insulin-like and growth-stimulating properties. The best characterized members of this family are IGF-I, a protein of 70 amino acids which plays an important role in post-natal growth, and IGF-II, a 67 amino acid protein which is most likely involved in fetal development.The gene structure of IGF-II has been elucidated for the human and the rat and shows extensive interspecies homologies. The gene structure of IGF-I has only partially been established. A striking feature of the IGF genes is that they are controlled by multiple promoters which are expressed in a tissue-specific and development-dependent way.  相似文献   

13.
In order to facilitate studies of insulin-like growth factor-I (IGF-I) expression during the pregnancy-associated development of uterus and mammary gland in the pig model, we have isolated several cDNA clones corresponding to porcine IGF-I (pIGF-I) mRNA. Sequence analysis of two cDNA fragments (sigf. 2 and sigf. 3) revealed an open reading frame encoding in order a putative 25 amino acid (aa) hydrophobic leader peptide, the mature (processed) 70 aa pIGF-I peptide and a 35 aa carboxy-terminal extension (E) peptide. The deduced aa sequence of the pIGF-I peptide is identical to human and bovine IGF-I but differs from that of rat and mouse at three and four residues, respectively. The sequences of the amino- and carboxy-terminal IGF extension peptides are also highly conserved among these species. Northern analysis using sigf. 3 as a probe revealed multiple IGF-I mRNAs (including species of 8000, 2300, and 1200 nucleotides in length) in uteri of pregnant pigs. Highest levels of the uterine IGF-I mRNAs were found at early pregnancy, when increased levels of immunoreactive tissue IGF-I were also observed. Mammary levels of IGF-I mRNAs and protein were considerably lower than that observed for uterus at the same time period. Thus, uterine production of IGF-I appears to be especially significant during early pregnancy in the pig when uterine growth, elevated IGF-I in uterine fluids, and rapid embryonic development are observed.  相似文献   

14.
Nearly all of the insulin-like growth factor (IGF) in the circulation is bound in a heterotrimeric complex composed of IGF, IGF-binding protein-3, and the acid-labile subunit (ALS). Full-length clones encoding ALS have been isolated from human liver cDNA libraries by using probes based on amino acid sequence data from the purified protein. These clones encode a mature protein of 578 amino acids preceded by a 27-amino acid hydrophobic sequence indicative of a secretion signal. Expression of the cDNA clones in mammalian tissue culture cells results in the secretion into the culture medium of ALS activity that can form the expected complex with IGF-I and IGF-binding protein-3. The amino acid sequence of ALS is largely composed of 18-20 leucine-rich repeats of 24 amino acids. These repeats are found in a number of diverse proteins that, like ALS, participate in protein-protein interactions.  相似文献   

15.
The GH dependence of somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) and insulin like growth factor II (IGF-II) mRNAs was investigated by Northern blot hybridizations of polyadenylated RNAs from liver, pancreas, and brain of normal rats, untreated hypophysectomized rats, and hypophysectomized rats 4 h or 8 h after an ip injection of human GH (hGH). Using a 32P-labeled human Sm-C/IGF-I cDNA as probe, four Sm-C/IGF-I mRNAs of 7.5, 4.7, 1.7, and 1.2 kilobases (kb) were detected in rat liver and pancreas but were not detectable in brain. In both liver and pancreas, the abundance of these Sm-C/IGF-I mRNAs was 8- to 10-fold lower in hypophysectomized rats than in normal rats. Within 4 h after injection of hGH into hypophysectomized animals, the abundance of liver and pancreatic Sm-C/IGF-I mRNAs was restored to normal. A human IGF-II cDNA was used as a probe for rat IGF-II mRNAs which were found to be very low in abundance in rat liver and showed no evidence of regulation by GH status. In pancreas, IGF-II mRNA abundance was below the detection limit of the hybridization procedures. The brain contained two IGF-II mRNAs of 4.7 and 3.9 kb that were 5-fold lower in abundance in hypophysectomized rats than in normal rats. These brain IGF-II mRNAs were not, however, restored to normal abundance at 4 or 8 h after ip hGH injection into hypophysectomized animals. To investigate further, the effect of GH status on abundance of Sm-C/IGF-I and IGF-II mRNAs in rat brain, a second experiment was performed that differed from the first in that hypophysectomized rats were given an injection of hGH into the lateral ventricle (intracerebroventricular injection) and a rat Sm-C/IGF-I genomic probe was used to analyze Sm-C/IGF-I mRNAs. In this experiment, a 7.5 kb Sm-C/IGF-I mRNA was detected in brain polyadenylated RNAs. The abundance of the 7.5 kb mRNA was 4-fold lower in hypophysectomized rats than in normal rats and was increased to 80% of normal within 4 h after icv administration of hGH to hypophysectomized animals. As in the first experiment, the abundance of the 4.7 and 3.9 kb brain IGF-II mRNAs was lower than normal in hypophysectomized rats. Brain IGF-II mRNAs were increased to 50% of normal in hypophysectomized rats given an icv injection of hGH but within 8 h after the injection rather than at 4 h as with Sm-C/IGF-I mRNAs.  相似文献   

16.
Protein and cDNA sequence analysis have revealed that the insulin-like growth factor (IGF-I) has been highly conserved among several mammalian species. Using the combined techniques of polymerase chain reaction and molecular cloning, we have now obtained the cDNA sequence encoding preproIGF-I from a teleost species, Oncorhynchus kisutch (coho salmon). The 2020 nucleotide (nt) cloned cDNA sequence contains a 528 nt open reading frame encoding 176 amino acids in preproIGF-I and 175 nt and 1317 nt of flanking 5'- and 3'-untranslated regions, respectively. The deduced amino acid sequence of salmon IGF-I is highly conserved relative to its mammalian homologues and there are only 14 amino acid differences out of 70 between salmon and human IGF-I. Interestingly, the C-terminal E domain of salmon proIGF-I, which is presumed to be proteolytically cleaved during biosynthesis, also shows striking amino acid sequence homology with its mammalian counterpart, except for an internal 27 residue segment that is unique to salmon proIGF-I. Northern analysis revealed that salmon preproIGF-I mRNA consists predominantly of a single 3900 nt sized band although minor bands were also observed after prolonged autoradiographic exposure. The RNA analysis also revealed that the level of preproIGF-I mRNA is increased 6-fold in liver RNA isolated from salmon injected with bovine GH, as compared to untreated controls. These results demonstrate that the primary structure and regulated expression of IGF-I by GH have been conserved in teleosts.  相似文献   

17.
We report for the first time the complete amino acid sequence for the growth hormone dependent insulin-like growth factor binding protein (IGFBP-3) in the rat. A human IGFBP-3 clone was generated using the polymerase chain reaction (PCR) and used to screen a rat liver cDNA library. cDNA clones of the rat IGFBP-3 were isolated and the full amino acid sequence deduced. The sequence begins with a putative, 26 amino acid signal peptide followed by a 265 amino acid binding protein. The amino acid sequence is over 80% homologous with the equivalent human IGFBP-3 form and shows complete conservation of 18 cysteine residues that are clustered at the amino and carboxy ends of the protein. IGFBP-3 is the binding subunit of the major circulating IGFBP in the rat, and hence the availability of precise structural data and cDNA probes provides an important opportunity for a detailed study of the control of IGFBP-3 synthesis at the level of gene expression.  相似文献   

18.
Human skeletal growth factor (human SGF) extracted from human bone has been purified to homogeneity by hydroxyapatite chromatography and gel filtration under dissociative conditions followed by FPLC heparin-Sepharose affinity chromatography and reverse phase HPLC. Human SGF was homogeneous except that in each preparation about 30% of SGF molecules lacked the N-terminal alanine. 75% of the human SGF sequence has been determined. The amino acid sequences of the N-terminal 20 amino acids and of several tryptic fragments were identical to the corresponding sequences of human insulin-like growth factor-II (IGF-II) purified from serum. However, since the C-peptide (variable region) of human SGF has not yet been sequenced, we cannot conclude that SGF is identical to IGF-II. Comparison of the amino acid sequence of human SGF with that of IGF-II variants that have been described in the literature revealed that human SGF is not one of the known IGF-II variants. IGF-I was also found in human bone extract but was several-fold less abundant than SGF/IGF-II. The relative abundance of SGF/IGF-II and IGF-I in bone corresponded to the relative rates of production of these two mitogens by human bone cells in vitro. Regarding the physiological significance of IGF-II in bone, previous studies on the biological actions of SGF in vitro suggest that this growth factor can have both paracrine and autocrine functions on cells of the osteoblast line. In addition, we have proposed the concept that SGF is a mediator of the coupling of bone formation to bone resorption, an important bone volume regulatory mechanism. In as much as SGF is very similar (if not identical) to IGF-II, it seems likely that these proposed regulatory functions of SGF in bone are attributable to IGF-II.  相似文献   

19.
N-terminal as well as internal amino acid sequence data were obtained from the GH dependent, insulin-like growth factor (IGF) binding protein, BP-53, purified from human plasma. Based on these sequence data, full-length cDNA clones of BP-53 have been isolated, and the complete deduced sequence of BP-53 determined. This sequence contains a 27 amino acid putative signal sequence followed by a mature protein of 264 amino acids containing 18 cysteine residues clustered near the N- and C-terminus. The deduced protein sequence of BP-53 has 33% amino acid identity including conservation of all 18 cysteine residues with the recently cloned BP-28, a smaller human IGF-binding protein identified in amniotic fluid and also secreted by the cell line HEP G2. Expression of the cloned BP-53 cDNA in mammalian tissue culture cells results in secretion of the protein into the culture medium. This expressed protein is identical to plasma-derived BP-53 in its immunoreactivity, high affinity binding of IGF-I and IGF-II, and mobility on sodium dodecyl sulfate gel electrophoresis.  相似文献   

20.
Insulin-like growth factor I (IGF-I) is a mitogenic polypeptide present in the plasma of man and rat that is thought to mediate the actions of pituitary growth hormone on cartilage to promote skeletal elongation. In the rat, plasma levels of IGF-I show both developmental and hormonal regulation: levels are low at birth, increase with age, and are decreased in growth hormone-deficient adult animals. The present study demonstrates that these changes in plasma IGF-I reflect the abundance of IGF-I RNA in rat liver. A human IGF-I cDNA probe hybridized to multiple RNA species in adult rat liver with sizes 8.6, 4.6, 3.2, 2.1, and 1.0-1.4 kilobases. These RNA species were decreased by greater than 80% in neonatal (2- and 12-day-old) rat liver and by greater than 90% in liver from adult rats made growth hormone-deficient by hypophysectomy. Treatment of hypophysectomized rats with growth hormone increased the abundance of all species of IGF-I RNA. These results suggest that growth hormone regulates the expression of its physiological mediator by altering the synthesis, stability, or both of IGF-I RNA in rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号