首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of carposporophyte development is described for the red alga Gloiosiphonia verticillaris Farl. The auxiliary cell produces gonimoblast initials, which divide to produce two types of gonimoblast cells—the nondividing vacuolate cells and terminal generative gonimoblast cells. The generative gonimoblast cells form clusters of carpospore initials, which eventually differentiate into carpospores. After gonimoblast filaments are formed, the auxiliary cell undergoes autolysis, causing degeneration of septal plugs between the auxiliary cell and adjacent cells, thus forming a fusion cell. Since this cell lacks starch and appears degenerate throughout carposporophyte development, a nutritive function cannot be ascribed to the fusion cell. Carpospore differentiation is simple and proceeds through three developmental stages. Young carpospores structurally resemble gonimoblast cells, because they contain undeveloped plastids, large quantities of floridean starch, and are surrounded by extensive mucilage instead of a distinct wall. In addition, dictyosomes form and begin to produce vesicles with fibrous contents representing carpospore wall material. During the intermediate stage, dictyosomes continue to produce vesicles that contribute additional carpospore wall material, thereby compressing the mucilage and creating a darker-staining layer outside the carpospore wall. Plastids form internal thylakoids by invaginations of the inner membrane of the peripheral thylakoid. The endoplasmic reticulum forms large granular vacuoles that appear to be degraded during subsequent stages of development. Mature carpospores form cored vesicles. They also contain mature chloroplasts, large amounts of floridean starch, and occasionally granular vacuoles. During this stage, interconnecting carpospore-carpospore and carpospore-gonimoblast cell septal plugs begin to undergo degeneration. This process may be mediated by tubular structures.  相似文献   

2.
The ultrastructure of post-fertilization development in Nienburgia andersoniana (J. Ag.) Kyl. is described. Above the auxiliary cell there is a group of four sterile cells. The presence of abundant storage products (starch granules, lipid bodies and protein crystals) in these cells indicates that the sterile cells function as nutrient suppliers to the young auxiliary and gonimoblast cells of the carposporophyte during its early steps of development. Following fertilization and transfer of the diploid nucleus to the auxiliary cell, the trichogyne disappears and large multinucleate gonimoblast initials are produced. These subsequently produce generative gonimoblast cells which cleave successively to form young carpospores. Those of the gonimoblast cells which will not differentiate into carpospores are transformed into cells producing mucilage. Both kinds of gonimoblast cells contain plastids, starch granules, cytoplasmic concentric membrane bodies and small vesicles. Dark-staining spherical masses occurring in the cytoplasm of the auxiliary and gonimoblast cells may represent degenerating haploid nuclei. Septal plugs interconnecting the auxiliary cell and gonimoblast cells increase considerably in size during carposporophyte development. The fusion cell at the late stage of carposporophyte development appears degenerative. Young carpospores have plastids and mitochondria, and concentric membrane bodies that will form mucilage sacs. Medium-aged carpospores have fully developed plastids, starch granules and fibrous vacuoles. Mature carpospores possess, in addition, cored vesicles. The inner pericarp cells contribute large amounts of mucilage to the cytostocarpic cavity and eventually are consumed. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 289–299.  相似文献   

3.
The ultrastructure of the early stages of carposporophyte development in the marine red algaChondria tenuissima has been studied. The diploid carposporophyte grows on the gametophyte. Apical gonimoblast cells develop into diploid carpospores. The basal gonimoblast cells cease to divide and undergo considerable cytoplasmic changes before they become incorporated into the expanding fusion cell. Nucleus and plastids degenerate gradually, while mitochondria remain intact. The smooth endoplasmic reticulum becomes prominent, it seems to produce small vesicles with electron dense contents. Simultaneously, numerous mucilage sacs are formed, presumably from dilating ER cisternae. The contents of the mucilage sacs are secreted by exocytosis. The pit connections between gonimoblast cells flare out. They remain as isolated bodies without connection to a wall after fusion. Secondary pit connections occur between vegetative gametophyte cells and sterile carposporophyte cells. There are three different morphological types of pit connections.  相似文献   

4.
The ultrastructure of the carposporophyte and carposporogenesis is described for the parasitic red alga Plocamiocolax pulvinata Setch. After presumed fertilization the zygote nucleus is apparently transferred to the auxiliary cell which initiates gonimoblast cell production. These gonimoblast cells differentiate into storage or generative cells. Storage gonimoblast cells (SGC) are large and multinucleate, contain large quantities of starch and are located nearest the auxiliary cell, when compared to the smaller uninucleate, devoid of starch, generative gonimoblast cells (GGC) that form terminal lobes of carpospores. In addition, compressed membrane bodies and annulate lamellae are common in these cells. During carposporophyte maturation the amount of starch in the SGC's decreases and eventually the auxiliary cell, as well as SGC's, degenerate. Generative gonimoblast cells (GGC's) cleave repeatedly to form carpospores which are interconnected by small pit connections. Stage one-carpospores are recognized by their elongated shape, the formation of small  相似文献   

5.
The ultrastructure of the carposporophyte and carposporogenesis is described for the red alga Scinaia articulata Setch. After fertilization, the trichogyne disappears, and the pericarp develops to form a thick protective tissue that surrounds the carposporophyte. The hypogynous cell cuts off both one-celled and two-celled sterile branches. Patches of chromatin are frequently observed in evaginations of the nuclear envelope, which appear to produce vesicles in the cytoplasm of the cell of the sterile branch. Large gonimoblast lobes extend from the carpogonium and cleave to form gonimoblast initials. Subsequently, a fusion cell is formed from fusions of the carpogonium, the hypogynous cell and the basal cell of the carpogonial branch. The mature carposporophyte comprises the fusion cell that is connected to the sterile branch cells, gonimoblast cells and carpospores and is surrounded by extensive mucilage. Young carpospores possess a large nucleus and proplastids with a peripheral thylakoid, but they have few dictyosomes and starch granules and are indistinguishable from gonimoblast cells. Subsequently, dictyosomes are formed, which produce vesicles with an electron-dense granule, which indicates an initiation of wall deposition. Thylakoid formation coincides with incipient starch granule deposition. The nuclear envelope produces fibrous vacuoles and concentric membrane bodies. Carpospores are interconnected by pit connections with two cap layers. Dictyosome activity increases, resulting in the production of vesicles, which either continue to deposit wall material or coalesce to form fibrous vacuoles. The final stage of carposporogenesis is characterized by the massive production of cored vesicles from curved dictyosomes. Mature carpospores are uninucleate and contain fully developed chloroplasts, numerous cored vesicles, numerous starch granules and fibrous vacuoles. The mature carpospore is surrounded by a wall layer and a separating layer, but a carposporangial wall is lacking.  相似文献   

6.
Leachiella pacifica, gen. et sp. nov., a marine alloparasitic red alga is described from Washington and California. Several species of Polysiphonia and Pterosiphonia are hosts for this parasite. The thallus is a white, multiaxial, unbranched pustule with rhizoidal filaments that ramify between host cells, forming numerous secondary pit connections with host cells. All reproductive structures develop from outer cortical cells. Tetrasporocytes, situated on stalk cells, undergo simultaneous, tetrahedral cleavage to form tetraspores. Spermatia are formed continuously by oblique cleavages of the elongate spermatial generating cells. This results in spermatial clusters consisting of 4–8 spermatia in an alternate arrangement. Carposporophyte development is procarpial. The carpogonium is part of a six-celled branch including a sterile cell that is formed by the basal cell. The carpogonial branch is attached laterally to an obovate supporting cell that also forms an auxiliary cell, presumably formed prior to fertilization. After fertilization the carpogonium temporarily fuses with the auxiliary cell apparently to transfer the diploid nucleus and initiate further fusion with the subtending supporting cell to form an incipient fusion cell. The auxiliary cell portion of this fusion cell divides to form gonimoblast initials that continue to divide, forming gonimoblast filaments whose terminal cells differentiate into carpospores. The remainder of the fusion cell enlarges by continual fusion with adjacent vegetative cells. The resultant carposporophyte consists of a basal, multinucleate fusion cell supporting a hemispherical cluster of gonimoblast filaments with terminally borne carpospores. Vegetatively, Leachiella resembles several other parasitic red algae but it is clearly separated by the procarp, carposporophyte development and structure, and tetrasporocyte cleavage.  相似文献   

7.
The ultra structure of post-fertilization development in Faucheocolax attenuata Setch. is described. Following fertilization and transfer of the diploid nucleus to the auxiliary cell, four gonimoblast initials usually are produced of the multinucleate auxiliary cell. Gonimoblast initials originally are uninucleate but undergo karyokinesis to form multinudeate gonimoblast cells. Terminal or generative gonimoblast cells cleave successively to form lobes of incipient carpospores, with each group of spores differentiating synchronously. Portions of the initial generative gonimoblast cells, however, remain to resume karyokinesis and repeat the process of cleavage into carpospores. Axial gonimoblast cells are transformed into secretory cells, which produce mucilage. Generative gonimoblast cells and auxiliary cells are similar in cellular structure. Both contain typical red algal proplastids, some dictyosomes, cytoplasmic concentric membranes, and numerous small vesicles. In addition, dark staining spherical masses, occurring in the cytoplasm of all cell types, may represent dehydrated haploid chromatin. Large septal plugs interconnect gonimoblast cells and the auxiliary cell. These plugs are small when first formed but increase dramatically in size during carposporophyte development.  相似文献   

8.
Following fertilization, the carposporophyte of Nemalion helminthoides (Velley in With.) Batters differentiates into four distinct regions: the fusion cell, the sterile gonimoblast cells, the carposporangial mother cells and the carposporangia. The gonimoblast is formed by apically dividing, monopodial filaments of limited growth which may later become pseudodichotomous. Upon differentiation of a terminal carposporangium, a gonimoblast filament may continue to grow sympodially. A single carposporangial mother cell may produce carposporangia in several different directions as well as proliferate successive carposporangia within the sporangial walls that remain after carpospore liberation. As the carposporophyte matures, the gonimoblast initial, the stalk cell, the hypogynous and subhypogynous cells fuse. Except for the fusion cell, all cells of the carposporophyte show organelle polarity and contain a distally located, lobed chloroplast and proximal nucleus.  相似文献   

9.
The development of the carposporophyte of Scinaia pseudojaponica Yamada et Tanaka is described for the first time. The carpogonial branch is 3-celled. Before fertilization the hypogynous cell divides into a group of 4 cells. Concurrently the cell beneath the hypogynous cells also produces initials which, following fertilization, develop into branched filaments that envelop the carposporophyte. After fertilization the gonimoblast initial is produced laterally from the basal part of the carpogonium. Carposporangia are produced in chains from the free ends of the gonimoblast filaments which grow toward the surface of the thyllus. A very thick pericarp surrounds the mature carposporophyte.  相似文献   

10.
The mode of division of vegetative cells, formation of spermatangial parent cells, initiation of the carpogonial branch apparatus, and formation of tetrasporangial initials are homologous developmental processes that are documented for the first time in the type species of the economically important family Gracilariaceae, Gracilaria verrucosa (Hudson) Papenfuss from the British Isles. G. verrucosa is characterized by a supporting cell of intercalary origin that bears a 2-celled carpogonial branch flanked by two sterile branches, direct fusion of cells of sterile branches onto the carpogonium, formation of an extensive carpogonial fusion cell through the incorporation of additional gametophytic cells prior to gonimoblast initiation, gonimoblast initials produced from fusion cell lobes, schizogenous development of the cytocarp cavity, inner gonimoblast cells producing tubular nutritive cells that fuse with cells of the pericarp or floor of the cystocarp, absence of cytologically modified tissue in the floor of the cystocarp, and carposporangial initials produced in clusters or irregular chains. Spermatangial parent cells are generated in flaments from intercalary cortical cells that line an intercellular space forming a ‘pit’ or ‘conceptacle’. Tetrasporangial initials are transformed from terminal cells derived through division of an outer cortical cell. Tetrasporangia are cruciately divided. The Gracilariaceae is removed from Gigartinales and transferred to the new order Gracilariales. Their closest living relatives appear to be agarophytes belonging to the Gelidiales and Ahnfeltiales.  相似文献   

11.
The vegetative morphology and reproduction of the freshwater rhodophyte Nothocladus lindaueri Skuja [=Batrachospermum lindaueri (Skuja) Necchi et Entwisle] were examined by light and electron microscopy. It was confirmed that this alga has a typical batrachospermalean pit plug with two cap layers, the outer one of which is domed. During elongation of hair cells, the primary wall is broken, forming a basal collar. Hair cells have a single nucleus and abundant Golgi bodies, en-doplasmic reticula (ER) and vesicles. Dividing apical cells of the fascicles have a nucleus with art adjacent zone of exclusion, the latter containing a single polar ring. Branched trichogynes and fertilized carpogonia are shown for the first time in this species. Carpogonial branch and involucral cells contain a prominent axial nucleus, proplastids, ER and vesicles. The pit plugs disintegrate among these cells leaving open pit connections. Carpogonia have plentiful mitochondria and vesicles. The wall at the trichogyne apex is thickened and densely stained. The carposporophyte centre consists of a mass of fusion cells with open pit connections, and indeterminate gonimoblast filaments arise from this mass. The combination of a symmetrical carpogonial base, a carposporophyte centre consisting of a mass of fusion cells, and exclusively indeterminate gonimoblast filaments appears to be unique among the members of the Batrachospermaceae. The specimen of N. lindaueri contains epiphytic filaments of Audouinella meiospora producing both spermatangia and monosporangia. Spermatium formation in N. lindaueri remains unknown.  相似文献   

12.
Examination of the reproductive morphology of the adelphoparasitic red alga Gardneriella tuberifera Kylin reveals that this monotypic genus is correctly placed in the family Solieriaceae (Gigartinales), to which its host Agardhiella gaudichaudii (Montagne) Silva et Papenfuss also belongs. Gardneriella is multiaxial, nonprocarpic and has an inwardly directed, three-celled carpogonial branch. The large, reniform uninucleate auxiliary cell is distinct prior to and after fertilization. It is diploidized by an unbranched, multicellular connecting filament which lacks pit connections. One or two connecting filaments arise from each fertilized carpogonium. From the diploidized auxiliary cell, the gonimoblast initial is cut off obliquely toward the interior of the thallus. The cells of the gonimoblast fuse with adjacent unpigmented vegetative cells of Gardneriella and pigmented cells of the host. These cells become incorporated into the developing cystocarp and, from those of Gardneriella, additional short chains of gonimoblast cells arise. The mature cystocarp is placentate, radiately lobed, and lacks a surrounding involucre. Carposporangia are borne in short chains and the unpigmented carpospores are released upon the dissolution of outer vegetative cells. No ostiole is present. Gardneriella appears to be most closely related to the placentate solieriacean genera Agardhiella, Sarcodiotheca, and Meristiella and therefore this genus should be placed in the tribe recently erected for these taxa, the Agardhielleae.  相似文献   

13.
The only member of the red algal family Solieriaceae known from New Zealand is the endemic Sarcodiotheca colensoi (Hook. & Harv.) Kylin. This study shows that it differs in several respects from the type S. furcata (Setch. & Gard.) Kylin; thus a new genus Placentophora is created for the New Zealand alga. Although P. colensoi nov. comb. is retained in the Solieriaceae on the basis of vegetative, spermatangial, tetrasporangial, carpogonial-branch and early gonimoblast features, it differs from typical members of that family in its pattern of later carposporophyte development. After a single gonimoblast initial is cut off from the auxiliary cell towards the center of the thallus, further gonimoblasts develop from the initial as ramifying, radiating filaments. These filaments enter an extensive “nutritive-cell” region surrounding the auxiliary cell, form, numerous connections to the “nutritive” cells, and incorporate most of them into a central placenta of interconnected, and variously-fused vegetative and gonimoblast cells. Carpo-sporangia then form in short chains around the periphery of the placenta. The cystocarp lacks both a central fusion cell and a sterile-celled investment, or “Faserhülle.” The distinctive carposporophyte of Placentophora is compared to patterns of gonimoblast development, known in other members of the Solieriaceae.  相似文献   

14.
DIXON  PETER S. 《Annals of botany》1959,23(3):397-407
The structure and development of the reproductive organs andcarposporophyte are described for two British species of Gelidium,G. latifolium (Grev.) Born. & Thur. and G. pulchellum (Turn.)Kütz. The gonimoblast does not develop directly from theunchanged carpogonium, as was thought by Kylin, but a swollenmultinucleate cell of irregular outline is formed first, eitherfrom the carpogonium alone, or by the fusion of the carpogoniumand certain neighbouring cells; the gonimoblast develops fromlong, non-septate processes of this multi-nucleate cell. Thesignificance of the fusion of the carpogonium and certain vegetativecells is discussed in relation to the various definitions ofthe auxiliary cell which have been proposed. It is concludedthat an auxiliary cell does not occur in Gelidium.  相似文献   

15.
The fusion cell in Asterocolax gardneri Setch, is a large, multinucleate, irregularly-shaped cell resulting from cytoplasmic fusions of haploid and diploid cells. Subsequent enlargement takes place by incorporating adjacent gonimoblast cells. The resultant cell consists of two parts—a central portion of isolated cytoplasm, surrounded by an electron dense cytoplasmic barrier, and the main component of the fusion cell cytoplasm surrounding the isolated cytoplasm. The fusion cell contains many nuclei, large quantities of floridean starch, endoplasmic reticulum, and vesicles, but few mitochondria, plastids and dictyosomes. The endoplasmic reticulum forms vesicles that apparently secrete large quantities of extracellular mucilage which surrounds the entire carposporophyte. The isolated cytoplasm also is multinucleate but lacks starch and a plasma membrane. Few plastids, ribosomes and mitochondria are found in this cytoplasm. However, numerous endoplasmic reticulum cisternae occur near the cytoplasmic barrier and they appear to secrete material for the barrier. In mature carposporophytes, all organelles in the isolated cytoplasm have degenerated.  相似文献   

16.
《Journal of phycology》2001,37(Z3):27-27
Kamiya, M.1, Moon, D. A.2, Kawai, H.1 & Goff, L. J.2 1Kobe University Research Center for Inland Seas, 2746 Iwaya, Awaji-cho 656-2401 Japan; 2Department of Biology, University of California, Santa Cruz, CA 95064 USA Although the morphology and developmental patterns of carposporophyte stage have been investigated well, there are few molecular, genetic, or biochemical data about this stage. The greatest obstacle to this research has been that the conventional methods to isolate tissue-specific genes require a lot of tissues, but the carposporophyte is very tiny and mostly embedded in female gametophyte tissues. Recent advanced techniques have allowed the subtractive cloning of differentially expressed genes from small amounts of tissue or cells. We applied the subtractive hybridization method using magnetic beads and PCR to the analysis of phase-specific cDNAs from carpo-sporophytes of Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). A hundred cystocarps were dissected to isolate gonimoblast tissues, and total RNAs were extracted from the gonimoblast tissues and the female gametophyte branches, respectively. Messenger RNAs were captured on paramagnetic oligo-dT beads, followed by first-strand cDNA synthesis on the beads. Three rounds of subtractive hybridization between the amplified second-strand carposporophyte cDNA in solution and the first-strand gametophyte cDNA attached to magnetic beads were sufficient to remove common genes present in both gametophyte and carposporophyte stages. A specific PCR product from the nuclear GAPDH gene was readily amplified from gametophyte and carposporophyte cDNA, but no amplification was observed using the subtracted carposporophyte cDNA as template. This control PCR product demonstrates that the hybridization steps successfully removed the common GAPDH cDNA, which is found in both stages, giving confidence that the remaining genes cloned from the subtracted carposporophyte cDNA library are stage-specific.  相似文献   

17.
Culture and morphological studies showed that Galaxaura oblongata (Ellis et Solander) Lamouroux has a triphasic life history with conspicuous gametophytes and small filamentous tetrasporophytes. Development of male and female reproductive structures is very similar and both begin with the enlargement of a terminal cell of a filament branch occupying a normal vegetative position within the apical pit of a thallus branch. In male thalli this modified branch forms a conceptacle in which spermatangia are produced. In female thalli, this modified branch forms a three-celled carpogonial branch consisting of a carpogonium, hypogynous cell and basal cell. Filament branches from the basal cell form a pericarp and the gonimoblast develops directly from the carpogonium. Carposporangia are produced in conceptacles which resemble the male conceptacles. About the time the first carposporangia are produced, the carpogonium, hypogynous cell and basal cell form a large fusion cell. Released carpospores germinate in a unipolar or bipolar manner and form small filamentous thalli. Under short day conditions, cruciate tetrasporangia are produced in small clusters. Tetraspores germinate similarly to carpospores and also form small filamentous thalli. Under low nutrient conditions, small cylindrical thalli develop on the filaments and these appear similar to gametophytes collected in nature.  相似文献   

18.
Carpospore differentiation in Faucheocolax attenuata Setch. can be separated into three developmental stages. Immediately after cleaving from the multinucleate gonimoblast cell, young carpospores are embedded within confluent mucilage produced by gonimoblast cells. These carpospores contain a large nucleus, few starch grains, concentric lamellae, as well as proplastids with a peripheral thylakoid and occasionally some internal (photosynthetic) thylakoids. Proplastids also contain concentric lamellar bodies. Mucilage with a reticulate fibrous substructure is formed within cytoplasmic concentric membranes, thus giving rise to mucilage sacs. Subsequently, these mucilage sacs release their contents, forming an initial reticulate deposition of carpospore wall material. Dictyosome vesicles with large, single dark-staining granules also contribute to wall formation and may create a separating layer between the mucilage and carpospore wall. During the latter stages of young carpospores, starch is polymerized in the perinuclear cytoplasmic area and is in close contact with endoplasmic reticulum. Intermediate-aged carpospores continue their starch polymerization. Dictyosomes deposit more wall material, in addition to forming fibrous vacuoles. Proplastids form thylakoids from concentric lamellar bodies. Mature carpospores are surrounded by a two-layered carpospore wall. Cytoplasmic constituents include large floridean starch granules, peripheral fibrous vacuoles, mature chloroplasts and curved dictyosomes that produce cored vesicles which in turn are transformed into adhesive vesicles. Pit connections remain intact between carpospores but begin to degenerate. This degeneration appears to be mediated by microtubules.  相似文献   

19.
The vegetative organization and reproductive development of Gracilariopsis lemaneiformis (Bory) Dawson, Acleto et Foldvik [including Gracilaria sjoestedtii Kylin] were investigated. Our observations on spermatangial development and post-fertilization features establish that Gracilariopsis Dawson is distinct at the generic level from Gracilaria Greville, and ice propose the resurrection of Gracilariopsis Dawson as a result. Spermatangial parent cells of Gracilariopsis are superficial, initiated in pairs or groups of three by concavo-convex longitudinal and transverse divisions. Each spermatangial parent cell cuts off a single, colorless spermatangium distally by a transverse division. The female reproductive apparatus consists of a supporting cell that bears a two-celled carpogonial branch flanked by two sterile branches, as in Gracilaria. Likewise, up to six sterile cells fuse with the carpogonium after fertilization to produce a primary fusion cell that generates the gonimoblasts; however, a secondary fusion cell is absent. Inner gonimoblast cells unite with cytologically modified cells of the inner pericarp by means of secondary pit-connections. Tubular nutritive cells are absent. The gonimoblast consists of a central sterile tissue interconnected throughout by secondary pit-connections surmounted by a fertile layer composed of carposporangia aligned in straight chains. The distribution of Gracilariopsis is extended to Western Europe.  相似文献   

20.
The ultrastructure sequence for the complete post-fertilization development is described in Cryptopleura ruprechtiana (C. Agardh) Kylin, a member of the Delesseriaceae. Following fertilization the diploid nucleus is transferred to the auxiliary cell. This contains typical red algal proplastids, cytoplasmic concentric membranes, numerous small vacuoles and lipid bodies. Crystalline inclusions and virus-like particles are also present. In addition darkly staining spherical masses possibly represent dehydrated haploid chromatin. The multinucleate auxiliary cell produces initially one large gonimoblast initial and subsequently many smaller gonimoblast initials. The first formed generative gonimoblast cell is similar in cellular structure to the auxiliary cell. Gonimoblast initials are uninucleate but through caryokinesis they become multinucleate. They undergo repeated cleavage to form more gonimoblast cells. Subsequent, centripetal cytokinesis results in the formation of clusters of gonimoblast cells. A new type structural cap or association is observed in the septal plugs that interconnect gonimoblast initials. Terminal or generative gonimoblast cells cleave to form additional gonimoblast cells. Only terminal gonimoblast cells are differentiated to carpospores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号