首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ESIPT and ESPT are the only photochemical deactivation pathways of the singlet excited states of 2-, 3- and 4-(2'-hydroxyphenyl)pyridines. Due to the existence of an intramolecular hydrogen bond in 2-(2'-hydroxyphenyl)pyridine, ESIPT leads only to protonation of the pyridine nitrogen. On the other hand, the singlet excited states of 3- and 4-(2'-hydroxyphenyl)pyridine undergo protonation of both nitrogen and carbon atoms of the pyridine ring, via ESIPT or ESPT. The extent of ESIPT to carbon (as measured by extent of deuterium incorporation) can be controlled by the amount of water in the solvent system.  相似文献   

2.
Potential energy (PE) curves for the intramolecular proton transfer in the ground (GSIPT) and excited (ESIPT) states of 3-hydroxy-flavone (3HF) and 5-hydroxy-flavone (5HF) were studied using DFT/B3LYP (6-31G (d,p)) and TD-DFT/B3LYP (6-31G (d,p)) level of theory respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer for both the compounds. Calculated PE curves of 3HF for the ground and excited singlet states proton transfer process explain its four state laser diagram. Excited states PE calculations support the ESIPT process to both 5HF and 3HF. The difference in ESIPT emission process of 3HF and 5HF have been explained in terms of HOMO and LUMO electron distribution of the enol and keto tautomer of these two compounds.  相似文献   

3.
Potential energy (PE) curves for intramolecular proton transfer in the ground (GSIPT) and intramolecular proton transfer in the excited (ESIPT) states of 3-hydroxychromone (3HC) have been studied using DFT-B3LYP/6-31G(d,p) and TD-DFT/6-31G(d,p) level of theory, respectively. Our calculations suggest the non-viability of GSIPT in 3HC. Excited states PE calculations show the existence of ESIPT process in 3HC. ESIPT in 3HC has also been explained in terms of HOMO and LUMO electron densities of the enol and keto tautomers of 3HC.  相似文献   

4.
A representative of a new class of dyes with dual fluorescence due to an excited state intramolecular proton transfer (ESIPT) reaction, namely 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone (QMOM), has been studied in a series of solvents covering a large range of polarity and basicity. A linear dependence of the logarithm of its two bands intensity ratio, log(I(N*)/I(T*)), upon the solvent polarity expressed as a function of the dielectric constant, (epsilon- 1)/(2epsilon + 1), is observed for a series of protic solvents. A linear dependence for log(I(N*)/I(T*)) is also found in aprotic solvents after taking into account the solvent basicity. In contrast, the positions of the absorption and the two emission bands of QMOM do not noticeably depend on the solvent polarity and basicity, indicating relatively small changes in the transition moment of QMOM upon excitation and emission. Time-resolved experiments in acetonitrile, ethyl acetate and dimethylformamide suggest an irreversible ESIPT reaction for this dye. According to the time-resolved data, an increase of solvent basicity results in a dramatic decrease of the ESIPT rate constant, probably due to the disruption of the intramolecular H-bond of the dye by the basic solvent. Due to this new sensor property, 3-hydroxyquinolones are promising candidates for the development of a new generation of environment-sensitive fluorescence dyes for probing interactions of biomolecules.  相似文献   

5.
The photophysical properties of some 3-hydroxychromones (3-HC) and 3-hydroxyquinolones (3-HQ) derivatives are investigated in polar and non-polar aprotic solvents using the TDDFT method and the PCM formalism. In acetonitrile and n-hexane, 2–(2-benzothienyl)-3-HC) (BTHC), 2-furyl-3-HQ (FHQ), and 1-methyl-2-furyl-3-HQ (MFHQ) have exhibited dual emission bands due to the excited state intramolecular proton transfer (ESIPT) reaction, leading to a single excited tautomer form. Our results indicate a very high BTHC light absorption efficiency and radiative rate constant. A charge transfer (CT) analysis suggests that the chromone moiety acts as an acceptor group while quinolone moiety acts as an electron donor. In addition, in non-polar n-hexane the furyl group may act as an acceptor, while in polar acetonitrile it may act as an electron donor. The energies of the upper and lower states of the normal form fluorescence have been decreased by the introduction of ortho-methyl group in FHQ. In all states, MFHQ exhibits large distortions of the dihedral angle between the chromone moiety and the furan group in para position. The ESIPT reaction is irreversible for the three derivatives in all cases studied in this work. Since experimental data with n-hexane are not available, results concerning this solvent are only predictions.  相似文献   

6.
Newly designed 2,1,3-benzothiadiazole-containing fluorescent probes with four excited state intramolecular proton transfer (ESIPT) sites were successfully tested in live cell-imaging assays using a confluent monolayer of human stem-cells (tissue). All tested dyes were compared with the commercially available DAPI and gave far better results.  相似文献   

7.
R P Hanzlik  K Hogberg  C M Judson 《Biochemistry》1984,23(13):3048-3055
The aromatic hydroxylation of six pairs of selectively deuterated monosubstituted benzenes was investigated with rat liver microsomes of various induction states. The substrates studied included 3,5-D2C6H3X (1a-6a) and 2,4,6-D3C6H2X (1b-6b), where X = Br, CN, NO2, OCH3, CH3, or Ph, respectively. The deuterium content of the ortho, meta, and para hydroxylated metabolites, as well as side chain oxidation products from 4 and 5, was determined by capillary gas chromatography-mass spectroscopy. These data were analyzed according to a hypothetical model in which a molecule of substrate can undergo either direct aromatic hydroxylation (defined as obligatory and complete loss of deuterium from the site of hydroxylation) or indirect aromatic hydroxylation (defined as the obligatory and complete shift of deuterium to an adjacent position, followed by its partial loss as governed by a kinetic deuterium isotope effect). From this and other analyses of the data the following conclusions were reached. (1) The relative extent of meta hydroxylation increased and the total yield of metabolites decreased as the substituents X became more electron withdrawing. (2) The induction state of the microsomes altered the regioselectivity of hydroxylation (2, 3, 4, or side chain) noticeably and predictably but had little or no effect on the retention or loss of deuterium during each hydroxylation. (3) With each substrate and at each ring position hydroxylation was found to occur by a combination of direct and indirect mechanisms. (4) The relative importance of direct vs. indirect mechanisms did not vary in a simple manner with either the position of hydroxylation or the nature of the substituent X.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The kinetics of the sensitized photodegradation of a variety of well-defined lignin model compounds was studied to determine the mechanisms responsible for lignin's photochemically-mediated oxidation. Monomeric and dimeric models representing lignin's phenolic end groups and nonphenolic dimers representing its inner core were studied. It was determined that the rate constants for the reaction of the deprotonated phenolic models with singlet oxygen (1O2) range from 0.96 to 7.2 x 10(7) M(-1) s(-1). The models were substituted with zero, one, or two electron-donating methoxy groups on both aryl rings and, while the rate constants showed little dependence on the substitution of the nonphenolic ring, the rate constants increased dramatically with increasing methoxy substitution of the phenol. Reaction between these deprotonated models and 1O2 is thus proposed to occur at the phenolate ring. Under neutral conditions, it was observed that the phenolic models react with excited state sensitizer, with this reaction also occuring at the phenol ring. The sum of the rate constants for quenching of and reaction with excited state sensitizer by lignin model compound ranges from 5.4 to 75 x 10(7) M(-1) s(-1). This study corrects previous reports that attribute the sensitized degradation of neutral lignin model compounds to reaction with 1O2. A nonphenolic aromatic ketone inner-core model was observed to undergo direct photolysis, and its reduced analog was not degraded by direct photolysis or reaction with 1O2 or excited state sensitizer. The oxidized inner-core model was also shown to be able to act as a sensitizer for the degradation of a phenolic lignin model compound.  相似文献   

9.
The absorption and fluorescence spectra of a Hantzsch 1,4-dihydropyridine derivative bearing a N,N-dimethylaminophenyl group at 4-position (H(2)Py-PhN(CH(3))(2)) in aprotic solvents have been examined and compared to model compounds 4-phenyl- and 4-methyl-substituted Hantzsch 1,4-dihydropyridines (H(2)Py-Ph and H(2)Py-Me). While H(2)Py-Ph and H(2)Py-Me show fluorescence around 420 nm from the local excited state of the dihydropyridine chromophore, H(2)Py-PhN(CH(3))(2) exhibits fluorescence around 520 nm from the intramolecular charge transfer (ICT) state involving the aniline and dihydropyridine groups as donor and acceptor, respectively. Upon addition of an acid to the solution of H(2)Py-PhN(CH(3))(2), the amino group in the aniline is protonated. Thus, the photoinduced intramolecular charge transfer is prevented, and only the fluorescence from the local excited state of the dihydropyridine chromophore can be detected. These changes in the fluorescence behavior are fully reversible: subsequent addition of a base to the acidic solution leads to the recovery of the ICT fluorescence and the quenching of the local fluorescence. Transition metal ions also can switch the fluorescence of H(2)Py-PhN(CH(3))(2). Evidence for the interaction between transition metal ions and the amino group in the dimethylaniline have been provided by absorption and emission spectrum as well as NMR studies.  相似文献   

10.
Density functional theory (DFT) was used to investigate the Mo-catalyzed intramolecular Pauson-Khand reaction of 3-allyloxy-1-propynylphosphonates. All intermediates and transition states were optimized completely at the B3LYP/6-31 G(d,p) level [LANL2DZ(f) for Mo]. In the Mo-catalyzed intramolecular Pauson-Khand reaction, the C–C oxidative cyclization reaction was the chirality-determining step, and the reductive elimination reaction was the rate-determining step. The carbonyl insertion reaction into the Mo–C(sp(3)) bondwas easier than into the Mo–C=C bond. And the dominant product predicted theoretically was of (S)-chirality, which agreed with experimental data. This reaction was solventd ependent, and toluene was the best among the three solvents toluene, CH3CN, and THF.  相似文献   

11.
Excited state intramolecular proton transfer (ESIPT) reaction along the O-H[Symbol: see text][Symbol: see text][Symbol: see text][Symbol: see text]O hydrogen bond of o-hydroxy benzaldehyde (OHBA), methyl salicylate (MS) and salicylic acid (SA) was investigated by ab-initio quantum chemical calculation and theory of atoms and molecules (QTAIM) for the first time. Variation in several geometric as well as QTAIM parameters along the reaction coordinate was monitored in the fully relaxed excited state potential energy curve (PEC) obtained from intrinsic reaction coordinate (IRC) analysis. Although, the excited state barrier height for the forward reaction (?E (0) (#) ) reduces substantially in all the systems, MS and SA do not show any obvious asymmetry for proton transfer. For MS and SA, the crossover of the bond index as well as the lengths of the participating bonds at the saddle point is assigned due to this symmetry in accordance with bond energy - bond order (BEBO) model, which does not hold true in OHBA both in the ground and excited states. Bond ellipticity, covalent and metallic character were examined for different structures along the reaction path within the QTAIM framework. The QTAIM analysis was found to be able to uniquely distinguish between the ground and excited states of the OHBA molecule as well as both determining the effects on the bonding character of adding different substituent groups and differentiating between the ESIPT reactions in the SA and MS molecules.  相似文献   

12.
Effects of intra- and intermolecular hydrogen-bonds on the photophysical properties of 2'-aminoacetophenone derivatives (X-C6H4-COCH3) having a substituted amino group (X) with different hydrogen-bonding ability to the carbonyl oxygen (X: NH2(AAP), NHCH3(MAAP), N(CH3)2(DMAAP), NHCOCH3(AAAP), NHCOCF3(TFAAP)) are investigated by means of steady-state and time-resolved fluorescence spectroscopy and time-resolved thermal lensing. Based on the photophysical parameters obtained in aprotic solvents with different polarity and protic solvents with different hydrogen-bonding ability, the characteristic photophysical behavior of the 2'-aminoacetophenone derivatives is discussed in terms of hydrogen-bonding and n,pi*-pi,pi* vibronic coupling. The dominant deactivation process of AAP and MAAP in nonpolar aprotic solvents is the extremely fast internal conversion (k(ic)= 1.0 x 10(11) s(-1) for AAP and 3.9 x 10(10) s(-1) for MAAP in n-hexane). The internal conversion rates of both compounds decrease markedly with increasing solvent polarity, suggesting that vibronic interactions between close-lying S1(pi,pi*) and S2(n,pi*) states lead to the large increase in the non-radiative decay rate of the lowest excited singlet state. It is also suggested that for MAAP, which has a stronger hydrogen-bond as compared to AAP, an intramolecular hydrogen-bonding induced deactivation is involved in the dissipation of the S1 state. For DMAAP, which cannot possess an intramolecular hydrogen-bond, the primary relaxation mechanism of the S1 state in nonpolar aprotic solvents is the intersystem crossing to the triplet state, whereas in protic solvents very efficient internal conversion due to intermolecular hydrogen-bonding is induced. In contrast, the fluorescence spectra of AAAP and TFAAP, which have an amino group with a much stronger hydrogen-bonding ability, give strongly Stokes-shifted fluorescence, indicating that these compounds undergo excited-state intramolecular proton transfer reaction upon electronic excitation.  相似文献   

13.
Synthetic 6-chromanol derivatives were prepared with several chlorine substitutions, which conferred both electron-withdrawing inductive effects and electron-donating resonance effects. A trichlorinated compound (2), a dichlorinated compound (3), and three monochlorinated compounds (4, 5, and 6) were synthesized; compounds 2, 3, and 6 were novel. The antioxidant activities of the compounds, evaluated in terms of their capacities to scavenge galvinoxyl radical, were associated with the number and positioning of chlorine atoms in the aromatic ring of 6-chromanol. The activity of compound 1 (2,2-dimethyl-6-chromanol) was slightly higher than the activities of compounds 2 (2,2-dimethyl-5,7-dichloro-6-chromanol) or 3 (2,2-dimethyl-5,7,8-trichloro-6-chromanol), in which the chlorine atoms were ortho to the phenolic hydroxyl group of 6-chromanol. The scavenging activity of compound 3 was slightly higher than that of 2, which contained an additional chlorine substituted in the 8 position. The activities of polychlorinated compounds 2 and 3 were higher than the activities of any of the monochlorinated compounds (4-6). Compound 6, in which a chlorine was substituted in the 8 position, exhibited the lowest activity. Substitution of a chlorine atom meta to the hydroxyl group of 6-chromanol (compounds 2 and 6) decreased galvinoxyl radical scavenging activity, owing to the electron-withdrawing inductive effect of chlorine. Positioning the chloro group ortho to the hydroxyl group (compounds 4 and 5) retained antioxidant activity because the intermediate radical was stabilized by the electron-donating resonance effect of chlorine in spite of the electron-withdrawing inductive effect of chlorine. Antioxidant activities of the synthesized compounds were evaluated for correlations with the O-H bond dissociation energies (BDEs) and the ionization potentials. The BDEs correlated with the second-order rate constants (k) in the reaction between galvinoxyl radical and the chlorinated 6-chromanol derivatives in acetonitrile. This indicated that the antioxidant mechanism of the synthesized compounds consisted of a one-step hydrogen atom transfer from the phenolic OH group rather than an electron transfer followed by a proton transfer. The synthesized compounds also exhibited hydroxyl radical scavenging capacities in aqueous solution.  相似文献   

14.
Theoretical studies were done on calcium channel drugs in order to gain insight into the mode of action. Empirical force field calculations with nifedipine, a calcium channel antagonist, indicate that the E-conformation at the ring juncture is lower in energy than the Z-conformation. This energy difference is only 0.2 kcal/mol when the esters in the 3- and 5-positions of the dihydropyridine (DHP) ring are both synperiplanar (sp, sp). Molecular orbital calculations on the ground and excited states in the Z-conformation with the esters in the (ap, sp) conformation show a low lying excited state with substantial intramolecular electron transfer (ET) character. This excited state is only 1.8 eV higher in energy than the ground state and corresponds to a transfer of approximately 0.3 electron from the DHP ring to the nitrobenzene moiety. We suggest that ET may play an important role in the mechanism of action, either intramolecular or, as previously proposed, intermolecular, along with lipophilicity and steric effects.  相似文献   

15.
16.
Three new benzazole isothiocyanate fluorescent dyes, 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzoxazole, 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzothiazole and 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzimidazole were synthesised, purified until optical purity grade and characterised by spectroscopic techniques. UV/VIS and steady-state fluorescence were also applied to characterise the photophysical behaviour of the dyes. These dyes exhibit an intense fluorescence emission with a large Stokes shift, inherent to the class of benzazoles which relax by the excited state intramolecular proton transfer (ESIPT) mechanism. The dyes were studied for labeling bovine serum albumin (BSA), resulting conjugates BSA-dye with a remarkable photostability under UV/VIS radiation in relation to classical protein labels. The resulting conjugates presented fluorescence in the blue-green region. Direct fluorescence detection of protein-labeled with those dyes after polyacrylamide gel electrophoresis indicates their potential use as fluorescent probes for proteins.  相似文献   

17.
Catechol occurs as an intermediate in the metabolism of both benzoate and phenol by strains of Pseudomonas putida. During growth at the expense of benzoate, catechol is cleaved ortho (1,2-oxygenase) and metabolized via the beta-ketoadipate pathway; during growth at the expense of phenol or cresols, the catechol or substituted catechols formed are metabolized by a separate pathway following meta (2,3-oxygenase) cleavage of the aromatic ring of catechol. It is possible to explain the mutually exclusive occurrence of the meta and ortho pathway enzymes in phenol- and benzoate-grown cells of P. putida on the basis of differences in the mode of regulation of these two pathways. By use of both nonmetabolizable inducers and blocked mutants, gratuitous synthesis of some of the meta pathway enzymes was obtained. All four enzymes of the meta pathway are induced by the primary substrate, cresol or phenol, or its analogue. Three enzymes of the ortho pathway that catalyze the conversion of catechol to beta-ketoadipate enol-lactone are induced by cis,cis-muconate, produced from catechol by 1,2-oxygenase-mediated cleavage. Observations on the differences in specificity of induction and function of the two pathways suggest that they are not really either tangential or redundant. The meta pathway serves as a general mechanism for catabolism of various alkyl derivatives of catechol derived from substituted phenolic compounds. The ortho pathway is more specific and serves primarily in the catabolism of precursors of catechol and catechol itself.  相似文献   

18.
Spectroscopic evidence is presented for the lack of intramolecular hydrogen bonding in a simple peptide derivative of 5,5-dimethylthiazolidine-4-carboxylic acid (Dtc). The infrared spectrum of Boc-Pro-Ile-OMe 1 in nonpolar solvents displays two N-H stretching bands at 3419 and 3330 cm-1 in CCl4 and one at 3417 and 3328 cm-1 in CHCl3. The low frequency band at 3328-3330 cm-1 may be assigned to conformations with an intramolecular hydrogen bond between the Ile N-H and Boc C = O. The band at 3417-3419 cm-1 is the normal Ile N-H stretch. In the polar solvent CH3CN only one NH stretching band at 3365 cm-1 is observed. The IR spectrum of Boc-Dtc-Ile-OMe 2, on the other hand, displays one N-H stretching band at 3423 cm-1 in CCl4 and one at 3418 cm-1 in CHCl3. The IR spectrum of 2 does not display the N-H stretching band that would arise from intramolecular hydrogen bonding between the Boc C = O and Ile N-H. The lack of intramolecular hydrogen bonding for Boc-Dtc-Ile-OMe 2 was evident also in the NMR spectra in nonpolar solvents. The 1H-NMR spectrum of the Pro dipeptide 1 in 50% CDCl3/C6D6 at 20 degrees displayed two Ile-NH signals at 6.58 and 7.74 ppm. The latter signal corresponds to the intramolecularly hydrogen bonded Ile-NH in the trans-Boc isomer of 1 (60% of the total population), while the former signal corresponds to the nonhydrogen bonded Ile-NH in the cis-Boc isomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Two novel donor-acceptor-substituted vinyltetrahydropyrene derivatives, 2-N,N-dimethylamino-7-(1-carbethoxyvinyl)-4,5,9,10-tetrahydropyrene, , and 2-N,N-dimethylamino-7-(1,1-dicyanovinyl)-4,5,9,10-tetrahydropyrene, , were synthesized and their photophysical properties investigated in solvents of different polarities. Our studies revealed the existence of intramolecular charge transfer excited states in these molecules. For both compounds the fluorescence maxima exhibited solvent polarity-dependent red shifts. These were quantitatively analysed by the Lippert-Mataga and Liptay equations to obtain the excited state dipole moments. Our results indicated that in the case of , emission takes place from a planar (1)CT state in all non-protic solvents. In the case of , the nature of the excited state depends on the solvent. A fast relaxation to a triplet state is proposed in cyclohexane. The emitting state in medium polar solvents is a planar (1)CT state. In highly polar solvents a twisted (1)CT state is invoked to explain the low fluorescence quantum yield. For both compounds CT nature of the emitting states were further confirmed by studies in acidic medium. The ground and excited state pK(a) values for and were determined using absorption and emission spectral changes observed in the presence of protic acids.  相似文献   

20.
The UV photolysis of 8-bromo-2'-deoxyadenosine has been investigated in different solvents and in the presence of additives like halide anions. Photolytic cleavage of the C-Br bond leads to formation of the C8 radical. In methanol, subsequent hydrogen abstraction from the solvent is the main radical reaction; however, in water or acetonitrile intramolecular hydrogen abstraction from the sugar moiety, to give the C5' radical, is the major path. This C5' radical undergoes a cyclization reaction on the adenine and gives the aminyl radical. A rate constant of 1.8 x 10(5) s(-1) has been measured by laser flash photolysis in CH(3)CN for this unimolecular process. Product studies from steady-state photolysis in acetonitrile have shown the conversion of 8-bromo-2'-deoxyadenosine to 5',8-cyclo-2'-deoxyadenosine in 65% yield and in a diastereoisomeric ratio (5' R):(5' S)= 1.7. Evidence supporting that the equilibrium Br*+ Br(-)[right left harpoons] Br(2)*(-) plays an important role in this synthetically useful radical cascade is obtained by regulating the relative concentrations of the two reactive oxidizing species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号