首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial distribution of (endemic) biodiversity in ancient and potentially ancient lakes in Europe is poorly understood. Examples include Lakes Prespa and Mikri Prespa in the Central Balkans. Utilizing information of the most species-rich taxon in these lakes, the Mollusca, we therefore attempt to statistically assess and visualize the spatial distribution of biodiversity, to analyse biogeographical patterns, and to carry out a conservation assessment. We estimate that at least 40 (sub)species (29 gastropod and 11 bivalve taxa) occur in the lakes. For both lakes combined, 37.5% of the mollusc taxa are endemic. In general, the mollusc richness in Lake Mikri Prespa is lower than in Lake Prespa and less heterogeneously distributed. The highest species richness can be seen on the western and south eastern shores of Lake Prespa. Based on the presence/absence of genera, a minimum spanning tree analysis supports the sister lake relationship of both lakes, which, in turn, are most closely related to lakes in the western Balkans and not to nearby Lake Ohrid. The IUCN red list assessment revealed (A) a tendency towards mollusc faunal change, (B) a contemporary decline and potential loss of mollusc diversity, and (C) that all endemic species are of conservation concern.  相似文献   

2.
Ancient Lake Ohrid: biodiversity and evolution   总被引:1,自引:1,他引:0  
Worldwide ancient lakes have been a major focal point of geological, biological, and ecological research, and key concepts in, for example, evolutionary biology are partly based on ancient lake studies. Ancient lakes can be found on most continents and climate zones with most actual or putative ancient lakes in Europe being restricted to the Balkan Region. The arguably most outstanding of them is the oligotrophic and karstic Lake Ohrid, a steep-sided graben of rift formation origin situated in the central Balkans. Here, an attempt is made to summarize current knowledge of the geological, limnological, and faunal history of Lake Ohrid. Additionally, existing data on biodiversity and endemism in Lake Ohrid are updated and evaluated, and patterns and processes of speciation are reviewed in the context of the Ohrid watershed, including its sister lake, Lake Prespa. Whereas the geological history of the Ohrid Graben is relatively well studied, there is little knowledge about the limnological and biotic history of the actual lake (e.g., the age of the extant lake or from where the lake first received its water, along with its first biota). Most workers agree on a time frame of origin for Lake Ohrid of 2–5 million years ago (Mya). However, until now, the exact limnological origin and the origin of faunal or floral elements of Lake Ohrid remain uncertain. Two largely contrasting opinions either favour the theory of de novo formation of Lake Ohrid in a dry polje with a spring or river hydrography or a palaeogeographical connection of Lake Ohrid to brackish waters on the Balkan Peninsula. Whereas neither theory can be rejected at this point, the data summarized in the current review support the de novo hypothesis. An assessment of the fauna and flora of Lake Ohrid confirms that the lake harbours an incredible endemic biodiversity. Despite the fact that some biotic groups are poorly studied or not studied at all, approximately 1,200 native species are known from the lake, including 586 animals, and at least 212 species are endemic, including 182 animals. The adjusted rate of endemicity is estimated at 36% for all taxa and 34% for Animalia. In terms of endemic biodiversity, Lake Ohrid is with these 212 known endemic species and a surface area of 358 km2 probably the most diverse lake in the world, taking surface area into account. Preliminary phylogeographical analyses of endemic Lake Ohrid taxa indicate that the vast majority of respective sister taxa occurs in the Balkans and that therefore the most recent common ancestors of Ohrid- and non-Ohrid species likely resided in the region when Lake Ohrid came into existence. These data also indicate that there is relatively little faunal exchange and overlap between Lake Ohrid and its sister lake, Lake Prespa, despite the fact that the latter lake is a major water supplier for Lake Ohrid. Studies on selected species flocks and scatters, mostly in molluscs, point towards the assumption that only few lineages originally colonized Lake Ohrid from the Balkans and that the majority of endemic species seen today probably started to evolve within the lake during the early Pleistocene. Within the Ohrid watershed, endemism occurs at different spatial and taxonomic scales, ranging from species endemic to certain parts of Lake Ohrid to species endemic to the whole watershed and from subspecies to genus level and possibly beyond. Modes of speciation in the Ohrid watershed are largely affected by its degree of isolation. Observational evidence points towards both allopatric (peripatric) and parapatric speciation. Though sympatric speciation within a habitat is conceivable, so far there are no known examples. Today, the lake suffers from increasing anthropogenic pressure and a “creeping biodiversity crisis”. Some endemic species presumably have already gone extinct, and there are also indications of invasive species penetrating Lake Ohrid. The comparatively small size of Lake Ohrid and the extremely small range of many endemic species, together with increasing human pressure make its fauna particularly vulnerable. It is thus hoped that this review will encourage future research on the ecology and evolutionary biology of the lake’s taxa, the knowledge of which would ultimately help protecting this unique European biodiversity hot spot. Guest editors: T. Wilke, R. V?in?l? & F. Riedel Patterns and Processes of Speciation in Ancient Lakes: Proceedings of the Fourth Symposium on Speciation in Ancient Lakes, Berlin, Germany, September 4–8, 2006  相似文献   

3.
Ancient sister lakes are considered to be ancient lakes lying in close geographic proximity, sharing a related origin and significant time of co-existence, usually having hydrological connection as well as a balanced degree of faunal overlap and distinctness. A paradigm for studying sister lake relationships are the ancient lakes Ohrid and Prespa in the Balkans, which are characterized by high degrees of endemicity. Three general patterns of endemic species can be distinguished for these lakes: (1) taxa that are endemic to either lake, with no close relatives in the respective sister lake, (2) closely related but distinct endemic taxa in both lakes (sister species) and (3) shared endemic taxa occurring in both lakes. In the present paper, two endemic freshwater pulmonate gastropod species, Radix relicta (Lake Ohrid) and R. pinteri (Lake Prespa), are used to study the evolution of presumed sister species based on biogeographical and comparative DNA data from world-wide Radix taxa. Phylogenetic, phylogeographical and parametric bootstrap analyses all suggest a sister group relationship of R. relicta and R. pinteri (pattern 2 of endemic diversity). Sister to these two taxa is the widespread R. ampla, which does not occur in the vicinity of lakes Ohrid and Prespa. The southern feeder spring complexes of Lake Ohrid are inhabited by another lineage (Radix sp. 1), which resembles Radix relicta in morphology/anatomy. For Lake Prespa, the widespread R. auricularia was reported in addition to the endemic R. pinteri. Comparative phylogenetic data favour a western Adriatic zoogeographical affinity of lakes Ohrid and Prespa over an Aegean-Anatolian faunal connection. The status of lakes Ohrid and Prespa as sister lakes is evaluated in the light of current knowledge on gastropod speciation and endemism in these hotspots of biodiversity.  相似文献   

4.
1. Zebra mussels and their relatives (Dreissena spp.) have been well studied in eastern, central and western Europe as well as in North America, because of their invasiveness and economic importance. Much less is known about the biology and biogeography of indigenous (endemic) taxa of Dreissena, in the Balkans. A better knowledge of these taxa could help us (i) understand the factors triggering invasiveness in some taxa and (ii) identify other potentially invasive species. 2. Using a phylogenetic approach (2108 base pairs from three gene fragments), Dreissena spp. from natural lakes in the Balkans were studied to test whether invasive Dreissena populations occur in such lakes on the Balkan Peninsula, whether Dreissena stankovici really is endemic to the ancient Lakes Ohrid and Prespa, and to infer the phylogenetic and biogeographical relationships of Balkan dreissenids. 3. No invasive species of Dreissena, such as Dreissena polymorpha, were recorded. The supposedly ‘endemic’D. stankovici is not restricted to the ancient Lakes Ohrid and Prespa, but is the most widespread and dominant species in the west‐central Balkans. Its southern sister taxon, Dreissena blanci, occurs sympatrically with D. stankovici in Lakes Prespa, Mikri Prespa and Pamvotis. Both species are classified into the subgenus Dreissena (Carinodreissena) of which the subgenus Dreissena (Dreissena) (which includes the invasive D. polymorpha) is the sister taxon. Dreissena blanci and D. stankovici are considered to represent distinct species. 4. On a global scale, the two Balkan species have small ranges. An early Pliocene time frame for the divergence of the subgenera Carinodreissena and Dreissena is discussed, as well as potential colonization routes of the most recent common ancestor of Carinodreissena spp. 5. The ambiguous taxonomy of dreissenids in the Balkans is addressed. As nominal D. blanci presbensis from Lake Prespa has nomenclatural priority over D. stankovici, the correct name for the latter taxon should be Dreissena presbensis.  相似文献   

5.
Is Lake Prespa Jeopardizing the Ecosystem of Ancient Lake Ohrid?   总被引:1,自引:0,他引:1  
Lake Prespa and Lake Ohrid, located in south-eastern Europe, are two lakes of extraordinary ecological value. Although the upstream Lake Prespa has no surface outflow, its waters reach the 160 m lower Lake Ohrid through underground hydraulic connections. Substantial conservation efforts concentrate on oligotrophic downstream Lake Ohrid, which is famous for its large number of endemic and relict species. In this paper, we present a system analytical approach to assess the role of the mesotrophic upstream Lake Prespa in the ongoing eutrophication of Lake Ohrid. Almost the entire outflow from Lake Prespa is found to flow into Lake Ohrid through karst channels. However, 65% of the transported phosphorus is retained within the aquifer. Thanks to this natural filter, Lake Prespa does not pose an immediate threat to Lake Ohrid. However, a potential future four-fold increase of the current phosphorus load from Lake Prespa would lead to a 20% increase (+0.9 mg P m−3) in the current phosphorus content of Lake Ohrid, which could jeopardize its fragile ecosystem. While being a potential future danger to Lake Ohrid, Lake Prespa itself is substantially endangered by water losses to irrigation, which have been shown to amplify its eutrophication.  相似文献   

6.
Anatomical characters of three endemic taxa from the Balkan lakes Ohrid and Prespa and one species from Lake Baikal were studied and compared with those of the widely distributed species of Pisidium . A close affinity of Pisidium edlaueri Kuiper 1960 from Ohrid and Pisidium maasseni Kuiper 1987 from Prespa to the Holarctic Pisidium nitidum Jenyns 1832 was confirmed; Pisidium raddei Dybowski 1902 from Baikal is anatomically identical to the Boreo-alpine Pisidium conventus Clessin 1877. Similarity in anatomical characters between the Ohridan subspecies Pisidium subtruncatum recalvum Kuiper 1960 and the nominal subspecies was also shown. These findings are compared with the situation in other ancient lakes. The similarity in some shell characters between the nonrelated taxa inhabiting these lakes is interpreted as being the result of convergent evolution.  相似文献   

7.
The morphologically remarkable endemic fauna within ancient lakes has received much attention in the literature. More inconspicuous taxa, however, often lack detailed molecular and morphometrical examination, although their proportion of the endemic fauna of an ancient lake must not be underestimated. Consequently, a better understanding of evolutionary patterns and processes within these lakes requires more knowledge about the often-neglected inconspicuous taxa. In the present study, we focus on the notoriously cryptic pea clam genus Pisidium (Bivalvia: Sphaeriidae). Though the genus is widely distributed, most endemic species are reported only from ancient lakes, including the European ancient sister lake system of Ohrid and Prespa on the Balkan Peninsula. Here we test for the first time hypotheses on the evolution of the endemic pea clams in this European biodiversity hotspot by molecular means. Combining a broad 16S phylogeny (comprising most European pea clam species), network analyses and morphometrical analyses, we found interesting biogeographical patterns and provide evidence for cryptic species in both lakes. Furthermore, we confirmed the proposed sister-species relationship of the endemics P. edlaueri in Lake Ohrid and P. maasseni in Lake Prespa, and we suggest scenarios of the endemic pea clam evolution within both lakes. The patterns of speciation found in the genus Pisidium are compared to patterns in morphologically distinct molluscan groups in lakes Ohrid und Prespa.  相似文献   

8.
Ancient lakes have long been recognized as evolutionary theatres and hot spots of endemism; the evolution of their morphologically often highly diverse species flocks has received much attention. However, as each ancient lake has its own geological and evolutionary history, modes of speciation may differ from system to system. Ancient lakes can act as evolutionary reservoirs that assure the survival of relict species, but at the same time extant species may evolve through intralacustrine speciation. Other aspects of interest are the actual rates of immigration, diversification or extinction as well as the temporal framework of morphological change. Many of these questions have been addressed in the African (e.g. Lake Tanganyika) and Asian (e.g. Lake Baikal) ancient lakes. For an European ancient lakes (e.g. Lakes Ohrid and Prespa), such studies are largely missing. In the present paper, extraordinarily shaped endemic freshwater limpets of the genus Ancylus from the Balkan Lake Ohrid are used in a phylogeographic and phylogenetic context to test whether they represent an ancient lake species flock, to study the mode of speciation, and to assess the timing of morphological change. Based on DNA data from two mitochondrial genes (COI, LSU rDNA), it has been found that the Lake Ohrid Ancylus species form an endemic monophyletic group. In addition, the lake's feeder springs are inhabited by another, undescribed Ancylus species. All other studied waterbodies within the watershed do not support their own Ancylus lineages but are inhabited by a widespread Mediterranean taxon. The split between the species endemic to the lake and its sister taxon is dated to 1.4±0.6 million years ago. The study presents the first genetic confirmation for the existence of a species flock in a European ancient lake. Contrary to the prevailing opinion it shows that, concerning Ancylus, Lake Ohrid represents a site of intralacustrine speciation rather than an evolutionary reservoir. Moreover, it provides the first evidence for rapid morphological change in an European ancient lake species flock. See also Electronic Supplement at: http://www.senckenberg.de/odes/06-12.htm.  相似文献   

9.
Löffler  H.  Schiller  E.  Kusel  E.  Kraill  H. 《Hydrobiologia》1998,384(1-3):69-74
The most interesting (Hutchinson, 1957), and at the same time oldest graben lakes of Europe, are Lakes Ohrid and Prespa. According to geologists and geographers, both originated during the Pliocene. They show karstic features and differ by volume, much less by area. At the occasion of an excursion to Lake Prespa in September 1994, an absence of oxygen in the hypolimnion between 17 m and the maximum lake depth, 48 m, was observed, for the first time since Stankovic' (1926) record. Moreover, a continuous decrease in lake level since the 1960s, the lowest transparency ever recorded from Megali Prespa, and high nutrient values, though only observed during a short part of the late stagnation period, are alarming signals, all suggesting eutrophication.  相似文献   

10.
Ancient lakes have long been recognized as “hot spots of evolution” and “evolutionary theatres” and they have significantly contributed to a better understanding of speciation and radiation processes in space and time. Yet, phylogenetic relationships of many ancient lake taxa, particularly invertebrate groups, are still unresolved. Also, the lack of robust morphological, anatomical, and phylogeographical data has largely prevented a rigorous testing of evolutionary hypotheses. For the freshwater gastropod genus Valvata—a group with a high degree of endemism in several ancient lakes—different evolutionary scenarios are suggested for different ancient lakes. Lake Baikal, for example, is inhabited by several endemic Valvata taxa that presumably do not form a monophyletic group. For such an evolutionary pattern, the term ancient lake species scatter is introduced here. In contrast, for the Balkan Lake Ohrid, workers previously suggested the presence of a monophyletic group of endemic Valvata species, that is, an ancient lake species flock. Sequence data of the mitochondrial cytochrome oxidase c subunit I gene (COI) from worldwide taxa, with a strong emphasis on Balkan species, are here used to test whether the putative Ohrid Valvata endemics represent an ancient lake species flock and to study patterns of speciation both on the Ohrid and the Balkan scale. The study reveals three distinct clades of endemic Valvata in Lake Ohrid. Monophyly of these taxa, however, is rejected, and they therefore do not represent an ancient lake species flock, but rather an ancient lake species scatter. Also, in contrast to many other gastropod groups in Lake Ohrid, the valvatids apparently did not radiate. Many Valvata taxa in ancient lakes are characterized by enhanced levels of shell complexity. However, it remains unclear whether these patterns are associated with ancient lake environments per se. It is here suggested that similarities in shell structure between North American and Balkan taxa might simply be due to convergent evolution.  相似文献   

11.
The length–weight relationships of three endemic species (Rutilus prespensis, Rutilus panosi and Rutilus ylikiensis) and one cosmopolitan (Rutilus rutilus) species are presented for 15 Greek lakes.  相似文献   

12.
13.
Six endemic and two widely distributed species living in Lake Ohrid were studied. In general, these hermaphroditic animals displayed no signs of departure from Hardy-Weinberg equilibrium. Genetic variation in all but one of the endemic species was of the same extent as that in geographically wide ranging invertebrates. On the other hand, the Lake Ohrid population of the common European species Dendrocoelum lacteum was monomorphic at all loci examined. D. sanctinaumi, one of the endemic species, exhibited a clear genetic subdivision into spring and littoral subpopulations. The genetic differentiation of Crenobia alpina alpina and C. a. montenigrina proved commensurable to that of well separated species from other genera. The data suggest that the separation of particular lineages in the set of Lake Ohrid endemics was widely dispersed over time.  相似文献   

14.
Leuciscine fishes represent an important component of freshwater ichthyofauna endemic to northern Mediterranean areas. This lineage shows high intra-specific morphological variability and exhibits high levels of hybridization, two characteristics that contribute to systematic uncertainties, misclassification of taxa and, potentially, the mismanagement of biodiversity. This study focused on brook chub, Squalius lucumonis, an endemic taxon of Central Italy. The taxonomic status of this species has long been questioned, and a hybrid origin from sympatric leusciscines (S. squalus x Rutilus rubilio, or S. squalus x Telestes muticellus) has been hypothesised. A phenotypic (evaluating shape and meristic counts) and genetic (using mitochondrial and nuclear markers) investigation of these four taxa was conducted to test species delimitation in sympatric areas and to evaluate the taxonomic status of S. lucumonis. One hundred and forty-five individuals of all four taxa were collected within streams of the lowest portion of the Tiber River basin and analysed; this region encompasses a large portion of the S. lucumonis distribution. The different morphological and genetic approaches were individually examined, compared, and then combined in a quantitative model to both investigate the limits of each approach and to identify cases of misclassification. The results obtained confirm the cladogenetic non-hybrid origin of S. lucumonis, highlight the need for immediate conservation actions and emphasise the value of an integrated approach in the study of leuciscines evolution.  相似文献   

15.
Ancient Lake Ohrid is characterized by vertical (bathymetrical) zones within the lake, presumably promoting allopatric speciation due to barriers or parapatric speciation along gradients. Examples within the lake include the belt of Chara algae as well as the shell zone, both presumably impeding migrations of benthic invertebrates. Three potential cases of vertical differentiation leading to distinct depth forms have been reported for the gastropod subfamily Pyrgulinae (Caenogastropoda: Hydrobiidae): Ginaia munda ssp., Macedopyrgula spp. and Ochridopyrgula macedonica ssp. Based on DNA data of the COI gene from a total of 145 specimens, this article aims at investigating the vertical differentiation within these depth forms and thus patterns of speciation in Lake Ohrid. An initial morphometric analysis showed a clear correlation of shell shape and collecting depth for Ginaia munda ssp. and Macedopyrgula spp. This morphological trend is largely reflected in the genetic structure of the respective taxa. The data presented here indicate the existence of strong gradients of abiotic and biotic factors in Lake Ohrid rather than distinct barriers. Therefore, parapatric speciation may be the predominant form of differentiation of benthic invertebrates in the lake. Incomplete lineage sorting, hybridization and phenotypic plasticity possibly caused by epigenetic mechanisms are discussed as possible reasons for the incongruence between geno- and phenotype observed in few specimens of Ginaia munda ssp. and Macedopyrgula spp. For the third taxon, Ochridopyrgula macedonica ssp., morphometric and genetic analyses revealed only weak support for the previously proposed depth forms. However, a horizontal differentiation of lake and spring populations was revealed instead, and parapatric and allopatric differentiations are discussed in this taxon.  相似文献   

16.
We investigated monogonont rotifers in two natural Macedonian lakes that greatly differ in age, size and trophic state: Lake Ohrid and Lake Dojran. A main characteristic of Lake Ohrid is the scarcity of nutrients and consequently a low level of primary production. Lake Dojran represents a typical eutrophic lake. Results clearly indicate that species numbers are negatively correlated with trophic degree. Qualitative analyses of rotifer compositions in Lakes Ohrid and Dojran showed the presence of 70 and 55 taxa, respectively. Rotifer assemblages differed in their community structure, population densities, and the occurrence pattern of dominant species. The density of rotifers increased with increasing nutrient concentration, varying from min. 0.67 ind. L−1 in June, 2006 to max. 8.2 ind. L−1 in July, 2004 in Lake Ohrid, whereas min. 28.8 ind. L−1 (in December, 2005) and max. 442.5 ind. L−1 (in September, 2005) were recorded in Lake Dojran. Gastropus stylifer and Keratella cochlearis were the most abundant species in the pelagic zone of Lake Ohrid, averaging monthly densities of 1.2 ind. L−1 and 0.6 ind. L−1, respectively, thereby contributing 29% and 15% to rotifer abundance. In contrast, Lake Dojran rotifers were dominated by Brachionus spp. Brachionus diversicornis and Brachionus calyciflorus f. amphiceros were most abundant, comprising 40% and 25% of the total rotifer density. These results corroborate our idea, that the trophic state is an important factor in determining the composition of rotifer communities.  相似文献   

17.
Aim The aims of this study are to establish a multi‐locus phylogeny‐based hypothesis for the biogeographical relationship of gastropods from the putative ancient Lake Egˇirdir, to test the respective null hypothesis, to estimate the timing of biogeographical events based on independent molecular clock approaches, and to interpret the data with respect to the putative ancient character of Lake Egˇirdir. Location Lake Egˇirdir, western Taurus Lake District, Turkey. Methods DNA sequences from the putatively only extant endemic taxon of Lake Egˇirdir, Falsipyrgula pfeiferi, as well as representatives of other pyrgulinid genera from Europe and western Asia are used for phylogenetic analyses based on Bayesian inference. The respective null hypothesis is tested utilizing parametric bootstrapping. The timing of evolutionary events is estimated based on two independent molecular clock approaches, which involve the modelling of judicious errors associated with branch‐length calculations and calibration points. Results Bayesian inference indicates a very close relationship between the Lake Egˇirdir and Ponto‐Caspian taxa. Parametric bootstrapping rejects the null hypothesis that these taxa are not monophyletic (P ≤ 0.01). The alternative hypothesis, namely monophyly of the Ponto‐Caspian and Egˇirdir taxa, can therefore be accepted. The two independent molecular clock approaches show diversion times for the Ponto‐Caspian/Egˇirdir taxa of 0.42 ± 0.18 and 0.43 ± 0.63 Ma. Main conclusions The present study shows that there is no close biogeographical affiliation between the probably only remaining endemic taxon of Lake Egˇirdir and taxa from central Europe or the Balkan region. Instead, there is a very close and relatively young (i.e. late Pleistocene) biogeographical relationship with the Ponto‐Caspian pyrgulinids. However, fossil and comparative data from other invertebrates indicate that biogeographical connections between Lake Egˇirdir and the Ponto‐Caspian region existed during various time periods, i.e. the Miocene/Pliocene, early Pleistocene, and late Pleistocene. Acknowledging the still‐restricted knowledge of the evolutionary history of the lake, the data presented here do not reject the putative ancient status of Lake Egˇirdir. Future studies utilizing endemic taxa of other lakes in the region need to show whether the western Taurus Lake District represents a melting pot of Pleistocene refuge biodiversity from different regions, and whether the admixture of divergent lineages has created a genetically distinct set of taxa that would warrant the designation of the area as a unique biogeographical subregion.  相似文献   

18.
Ancient lakes as places of extensive speciation processes have been characterized by a high degree of endemicity and biodiversity. The most outstanding European ancient lake is the oligotrophic and karstic Balkan Lake Ohrid. The lake is inhabited by a number of endemic species, but their evolutionary history is largely unresolved. in the present study, the genetic structure, gene genealogy and demographic history of the representatives of the Ohridian endemic Proasellus species were studied using both biparentally (allozyme loci) and maternally (partial mitochondrial cytochrome oxidase subunit I gene) inherited markers. Both data sets gave similar results and supported discrepancies among genetic differentiation, the current morphology-based taxonomy and bathymetric segregation. Horizontal distribution of endemic Proasellus species (Lake Ohrid vs adjacent feeder springs) within the lake presumably promote parapatric speciation whereas the main role of vertical barriers into diversification processes was not fully supported. The analyses of demographic history suggested the decline of endemic isopod populations. The radiation of endemic Proasellus populations within the lake could have started from the sublittoral/profundal zone towards the littoral or in the opposite direction — from the littoral to the profundal. Our analyses did not exclude both possibilities.  相似文献   

19.
In 23 populations of Greek Leuciscus ( Squalius ), the percentage of polymorphic allozyme loci ranged between 0·034 and 0·379 (P=0·19) and expected heterozygosity was 0·011–0·166 (He=0·067). Current taxonomy is confusing and does not correspond to genetic data that support the presence in Greece of at least seven different species: L. cephalus , L. peloponnensis , L. prespensis , L. moreoticus , L. borysthenicus , L. keadicus and Leuciscus sp. from Euboea Island. The maximum Nei modified genetic distance was found among L. keadicus and the rest of subgenus Squalius populations D * Nei=0·446–0·705). Accepting the molecular clock hypothesis, speciation for the genus Leuciscus in Greece must have occurred during the Cenozoic period (between the Middle Miocene and the Later Pliocene). The two main biogeographical events causing speciation on mainland Greece were the Uplift of the Pindic cordillera and the isolation of the southern part of Peloponnesus. The faunistic composition of the lakes studied, in which new taxa are reconsidered, suggests the same faunistic origin in the Early Pliocene for Lakes Prespa and Stymphalia and a younger one in the Late Pliocene for Lake Trichonis. Euboea Island was not a zoogeographical unit during the Cenozoic. The isolation of all the freshwater fish fauna of Euboea has occurred since the Pliocene. The biogeographical model proposed here differs from classical hypotheses in considering of lesser importance the dispersion of L. cephalus on the Greek mainland during the Neogene and Quaternary.  相似文献   

20.
Lake Ohrid represents a refugial ecosystem which harbors a great number of endemic and relics living forms. Though the whole Lake’s fauna characterizes high biodiversity and endemism, this is most obvious in the class of Gastropoda. Unlike the Lake, the fauna of the adjacent waters fairly differs from the Lake’s fauna, i.e., it is poorer both in term of diversity and endemism. The main goal of our study was to perform comparative biocenological researches on the gastropod fauna from Lake Ohrid and the adjacent waters in the watershed of the Lake. Based on the results we have obtained, it could be clearly noted that different habitats are characterized with different qualitative composition of the gastropod fauna not only when compared the gastropod settlement between the Lake and its surrounding waters, but also in the Lake for itself. Total of 50 species of gastropods have been recorded in the littoral regions of the lake and its coastal waters during 2009/2010. They belong to subclass Orthogastropoda (50 taxa). 21 species out of 50 are recorded in the adjacent waters: 13 of them settle both the adjacent waters and the Lake, while 8 strictly inhabit the adjacent waters. In terms of endemism, 17 are endemic and 4 cosmopolitan. The remainig 29 (out of 50 recorded) settle up only the littoral zone of the Lake: 25 are endemic and 4 are cosmopolitan. The percentage of endemism based on the recorded species for the class Gastropoda is 84%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号