首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Guo WT  Xu WY  Gu MM 《遗传》2012,34(8):935-942
无义介导的mRNA降解(Nonsense-mediated mRNA decay,NMD)是一种广泛存在于真核生物细胞中的mRNA质量监控机制。该机制通过识别和降解含有提前终止密码子(Premature translational-termination codon,PTC)的转录产物防止有潜在毒性的截短蛋白的产生。据估计,约1/3的遗传性疾病是由提前终止密码子引起的,而NMD作用通常会改变某些遗传病的临床症状或遗传方式。文章主要综述了人体细胞中NMD对底物的识别及其作用机制,并以几种单基因遗传病为例探讨其对这些疾病表型的影响,表明NMD作用机制的进一步揭示将有助于单基因遗传病发病机制的阐明及治疗方法的改进。  相似文献   

7.
Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics   总被引:1,自引:0,他引:1  
Studies of nonsense-mediated mRNA decay in mammalian cells have proffered unforeseen insights into changes in mRNA-protein interactions throughout the lifetime of an mRNA. Remarkably, mRNA acquires a complex of proteins at each exon-exon junction during pre-mRNA splicing that influences the subsequent steps of mRNA translation and nonsense-mediated mRNA decay. Complex-loaded mRNA is thought to undergo a pioneer round of translation when still bound by cap-binding proteins CBP80 and CBP20 and poly(A)-binding protein 2. The acquisition and loss of mRNA-associated proteins accompanies the transition from the pioneer round to subsequent rounds of translation, and from translational competence to substrate for nonsense-mediated mRNA decay.  相似文献   

8.
9.
Nonsense-mediated mRNA decay in Saccharomyces cerevisiae.   总被引:11,自引:0,他引:11  
  相似文献   

10.
UPF3 is a key nonsense-mediated mRNA decay (NMD) factor required for mRNA surveillance and eukaryotic gene expression regulation. UPF3 exists as two paralogs (A and B) which are differentially expressed depending on cell type and developmental stage and believed to regulate NMD activity based on cellular requirements. UPF3B mutations cause intellectual disability. The underlying molecular mechanisms remain elusive, as many of the mutations lie in the poorly characterized middle-domain of UPF3B. Here, we show that UPF3A and UPF3B share structural and functional homology to paraspeckle proteins comprising an RNA-recognition motif-like domain (RRM-L), a NONA/paraspeckle-like domain (NOPS-L), and extended α-helical domain. These domains are essential for RNA/ribosome-binding, RNA-induced oligomerization and UPF2 interaction. Structures of UPF2′s third middle-domain of eukaryotic initiation factor 4G (MIF4GIII) in complex with either UPF3B or UPF3A reveal unexpectedly intimate binding interfaces. UPF3B’s disease-causing mutation Y160D in the NOPS-L domain displaces Y160 from a hydrophobic cleft in UPF2 reducing the binding affinity ∼40-fold compared to wildtype. UPF3A, which is upregulated in patients with the UPF3B-Y160D mutation, binds UPF2 with ∼10-fold higher affinity than UPF3B reliant mainly on NOPS-L residues. Our characterization of RNA- and UPF2-binding by UPF3′s middle-domain elucidates its essential role in NMD.  相似文献   

11.
UPF1 is an essential eukaryotic RNA helicase that plays a key role in various mRNA degradation pathways, notably nonsense-mediated mRNA decay (NMD). In combination with UPF2 and UPF3, it forms part of the surveillance complex that detects mRNAs containing premature stop codons and triggers their degradation in all organisms studied from yeast to human. We describe the 3 A resolution crystal structure of the highly conserved cysteine-histidine-rich domain of human UPF1 and show that it is a unique combination of three zinc-binding motifs arranged into two tandem modules related to the RING-box and U-box domains of ubiquitin ligases. This UPF1 domain interacts with UPF2, and we identified by mutational analysis residues in two distinct conserved surface regions of UPF1 that mediate this interaction. UPF1 residues we identify as important for the interaction with UPF2 are not conserved in UPF1 homologs from certain unicellular parasites that also appear to lack UPF2 in their genomes.  相似文献   

12.
Nonsense-mediated decay of mutant waxy mRNA in rice   总被引:13,自引:0,他引:13  
  相似文献   

13.
Nonsense-mediated mRNA decay is a surveillance pathway that reduces errors in gene expression by eliminating aberrant mRNAs that encode incomplete polypeptides. Recent experiments suggest a working model whereby premature and normal translation termination events are distinct as a consequence of the spatial relationship between the termination codon and mRNA binding proteins, a relationship partially established by nuclear pre-mRNA processing. Aberrant termination then leads to both translational repression and an increased susceptibility of the mRNA to multiple ribonucleases.  相似文献   

14.
Nonsense-mediated mRNA decay: from vacuum cleaner to Swiss army knife   总被引:7,自引:1,他引:6  
Nonsense-mediated mRNA decay (NMD) downmodulates mRNAs that have in-frame premature termination codons and prevents translation of potentially harmful truncated proteins from aberrant mRNAs. Two new approaches have identified physiological NMD substrates, and suggest that NMD functions as a multipurpose tool in the modulation of gene expression.  相似文献   

15.
16.
Nonsense‐mediated decay (NMD) is a eukaryotic quality control mechanism that degrades mRNAs carrying premature stop codons. In mammalian cells, NMD is triggered when UPF2 bound to UPF3 on a downstream exon junction complex interacts with UPF1 bound to a stalled ribosome. We report structural studies on the interaction between the C‐terminal region of UPF2 and intact UPF1. Crystal structures, confirmed by EM and SAXS, show that the UPF1 CH‐domain is docked onto its helicase domain in a fixed configuration. The C‐terminal region of UPF2 is natively unfolded but binds through separated α‐helical and β‐hairpin elements to the UPF1 CH‐domain. The α‐helical region binds sixfold more weakly than the β‐hairpin, whereas the combined elements bind 80‐fold more tightly. Cellular assays show that NMD is severely affected by mutations disrupting the beta‐hairpin binding, but not by those only affecting alpha‐helix binding. We propose that the bipartite mode of UPF2 binding to UPF1 brings the ribosome and the EJC in close proximity by forming a tight complex after an initial weak encounter with either element.  相似文献   

17.
Lejeune F  Li X  Maquat LE 《Molecular cell》2003,12(3):675-687
Nonsense-mediated mRNA decay (NMD) is a mechanism by which cells recognize and degrade mRNAs that prematurely terminate translation. To date, the polarity and enzymology of NMD in mammalian cells is unknown. We show here that downregulating the Dcp2 decapping protein or the PM/Scl100 component of the exosome (1) significantly increases the abundance of steady-state nonsense-containing but not nonsense-free mRNAs, and (2) significantly slows the decay rate of transiently induced nonsense-containing but not nonsense-free mRNA. Downregulating poly(A) ribonuclease (PARN) also increases the abundance of nonsense-containing mRNAs. Furthermore, NMD factors Upf1, Upf2, and Upf3X coimmunopurify with the decapping enzyme Dcp2, the putative 5'-->3' exonuclease Rat1, the proven 5'-->3' exonuclease Xrn1, exosomal components PM/Scl100, Rrp4, and Rrp41, and PARN. From these and other data, we conclude that NMD in mammalian cells degrades mRNAs from both 5' and 3' ends by recruiting decapping and 5'-->3' exonuclease activities as well as deadenylating and 3'-->5' exonuclease activities.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号