首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Knoop V  Rüdinger M 《FEBS letters》2010,584(20):4287-4291
A particular type of pentatricopeptide repeat (PPR) proteins with variable length of the 35 aa PPR motifs and conserved carboxyterminal extensions, named the PLS proteins, was so far exclusively identified in land plants. Several PLS proteins with such domain extensions (E, E+, DYW) were shown to be involved in plant organellar RNA editing but their evolutionary origin had remained enigmatic. We here report the first case of DYW-type PLS proteins outside of the plant kingdom in the protist Naegleria gruberi and hypothesize on horizontal gene transfer in very early land plant evolution.  相似文献   

3.
The plant‐specific pentatricopeptide repeat (PPR) proteins with variable PPR repeat lengths (PLS‐type) and protein extensions up to the carboxyterminal DYW domain have received attention as specific recognition factors for the C‐to‐U type of RNA editing events in plant organelles. Here, we report a DYW‐protein knockout in the model plant Physcomitrella patens specifically affecting mitochondrial RNA editing positions cox1eU755SL and rps14eU137SL. Assignment of DYW proteins and RNA editing sites might best be corroborated by data from a taxon with a slightly different, yet similarly manageable low number of editing sites and DYW proteins. To this end we investigated the mitochondrial editing status of the related funariid moss Funaria hygrometrica. We find that: (i) Funaria lacks three mitochondrial RNA editing positions present in Physcomitrella, (ii) that F. hygrometrica cDNA sequence data identify nine DYW proteins as clear orthologues of their P. patens counterparts, and (iii) that the ‘missing’ 10th DYW protein in F. hygrometrica is responsible for two mitochondrial editing sites in P. patens lacking in F. hygrometrica (nad3eU230SL, nad4eU272SL). Interestingly, the third site of RNA editing missing in F. hygrometrica (rps14eU137SL) is addressed by the DYW protein characterized here and the presence of its orthologue in F. hygrometrica is explained through its simultaneous action on site cox1eU755SL conserved in both mosses.  相似文献   

4.
5.
Pentatricopeptide repeat (PPR) proteins are particularly numerous in plant mitochondria and chloroplasts, where they are involved in different steps of RNA metabolism, probably due to the repeated 35 amino acid PPR motifs that are thought to mediate interactions with RNA. In non-photosynthetic eukaryotes only a handful of PPR proteins exist, for example the human LRPPRC, which is involved in a mitochondrial disease. We have conducted a systematic study of the PPR proteins in the fission yeast Schizosaccharomyces pombe and identified, in addition to the mitochondrial RNA polymerase, eight proteins all of which localized to the mitochondria, and showed some association with the membrane. The absence of all but one of these PPR proteins leads to a respiratory deficiency and modified patterns of steady state mt-mRNAs or newly synthesized mitochondrial proteins. Some cause a general defect, whereas others affect specific mitochondrial RNAs, either coding or non-coding: cox1, cox2, cox3, 15S rRNA, atp9 or atp6, sometimes leading to secondary defects. Interestingly, the two possible homologs of LRPPRC, ppr4 and ppr5, play opposite roles in the expression of the cox1 mt-mRNA, ppr4 being the first mRNA-specific translational activator identified in S. pombe, whereas ppr5 appears to be a general negative regulator of mitochondrial translation.  相似文献   

6.
Pentatricopeptide repeat (PPR) proteins with an E domain have been identified as specific factors for C to U RNA editing in plant organelles. These PPR proteins bind to a unique sequence motif 5′ of their target editing sites. Recently, involvement of a combinatorial amino acid code in the P (normal length) and S type (short) PPR domains in sequence specific RNA binding was reported. PPR proteins involved in RNA editing, however, contain not only P and S motifs but also their long variants L (long) and L2 (long2) and the S2 (short2) motifs. We now find that inclusion of these motifs improves the prediction of RNA editing target sites. Previously overlooked RNA editing target sites are suggested from the PPR motif structures of known E-class PPR proteins and are experimentally verified. RNA editing target sites are assigned for the novel PPR protein MEF32 (mitochondrial editing factor 32) and are confirmed in the cDNA.  相似文献   

7.
8.
9.
Higher plants encode hundreds of pentatricopeptide repeat proteins (PPRs) that are involved in several types of RNA processing reactions. Most PPR genes are predicted to be targeted to chloroplasts or mitochondria, and many are known to affect organellar gene expression. In some cases, RNA binding has been directly demonstrated, and the sequences of the cis-elements are known. In this work, we demonstrate that RNA cis-elements recognized by PPRs are constrained in chloroplast genome evolution. Cis-elements for two PPR genes and several RNA editing sites were analyzed for sequence changes by pairwise nucleotide substitution frequency, pairwise indel frequency, and maximum likelihood (ML) phylogenetic distances. All three of these analyses demonstrated that sequences within the cis-element are highly conserved compared with surrounding sequences. In addition, we have compared sequences around chloroplast editing sites and homologous sequences in species that lack an editing site due to the presence of a genomic T. Cis-elements for RNA editing sites are highly conserved in angiosperms; by contrast, comparable sequences around a genomically encoded T exhibit higher rates of nucleotide substitution, higher frequencies of indels, and greater ML distances. The loss in requirement for editing to create the ndhD start codon has resulted in the conversion of the PPR gene responsible for editing that site to a pseudogene. We show that organellar dependence on nuclear-encoded PPR proteins for gene expression has constrained the evolution of cis-elements that are required at the level of RNA processing. Thus, the expansion of the PPR gene family in plants has had a dramatic effect on the evolution of plant organelle genomes.  相似文献   

10.
11.
RNA editing in plant mitochondria and plastids alters specific nucleotides from cytidine (C) to uridine (U) mostly in mRNAs. A number of PLS-class PPR proteins have been characterized as RNA recognition factors for specific RNA editing sites, all containing a C-terminal extension, the E domain, and some an additional DYW domain, named after the characteristic C-terminal amino acid triplet of this domain. Presently the recognition factors for more than 300 mitochondrial editing sites are still unidentified. In order to characterize these missing factors, the recently proposed computational prediction tool could be of use to assign target RNA editing sites to PPR proteins of yet unknown function. Using this target prediction approach we identified the nuclear gene MEF35 (Mitochondrial Editing Factor 35) to be required for RNA editing at three sites in mitochondria of Arabidopsis thaliana. The MEF35 protein contains eleven PPR repeats and E and DYW extensions at the C-terminus. Two T-DNA insertion mutants, one inserted just upstream and the other inside the reading frame encoding the DYW domain, show loss of editing at a site in each of the mRNAs for protein 16 in the large ribosomal subunit (site rpl16-209), for cytochrome b (cob-286) and for subunit 4 of complex I (nad4-1373), respectively. Editing is restored upon introduction of the wild type MEF35 gene in the reading frame mutant. The MEF35 protein interacts in Y2H assays with the mitochondrial MORF1 and MORF8 proteins, mutation of the latter also influences editing at two of the three MEF35 target sites. Homozygous mutant plants develop indistinguishably from wild type plants, although the RPL16 and COB/CYTB proteins are essential and the amino acids encoded after the editing events are conserved in most plant species. These results demonstrate the feasibility of the computational target prediction to screen for target RNA editing sites of E domain containing PLS-class PPR proteins.  相似文献   

12.
13.
PPR (Pentatricopeptide repeat) proteins are mainly involved in RNA metabolism. In Arabidopsis, the PPR family is composed of more than 450 members; however, only few of them were functionally characterized. In a previous report,1 we identified a novel mitochondrial PPR RNA editing factor, named SLO2, which is responsible for 7 editing events in Arabidopsis. Loss-of-function mutation in SLO2 results in plant growth retardation, and delayed development, and leads to the dysfunction of mitochondrial complex I, III and IV. slo2 is the first example of a single gene mutation affecting 3 complexes of the mitochondrial electron transport chain. This Short Communication discusses the conservation of upstream regions of editing sites affected by SLO2 and illustrates the effect of mutation of SLO2 on activation of the alternative pathway. We also reflect upon the implications and perspectives of these findings.  相似文献   

14.
15.
16.
17.
18.
19.
The mitochondrial and chloroplast mRNAs of the majority of land plants are modified through cytidine to uridine (C‐to‐U) RNA editing. Previously, forward and reverse genetic screens demonstrated a requirement for pentatricopeptide repeat (PPR) proteins for RNA editing. Moreover, chloroplast editing factors OZ1, RIP2, RIP9 and ORRM1 were identified in co‐immunoprecipitation (co‐IP) experiments, albeit the minimal complex sufficient for editing activity was never deduced. The current study focuses on isolated, intact complexes that are capable of editing distinct sites. Peak editing activity for four sites was discovered in size‐exclusion chromatography (SEC) fractions ≥ 670 kDa, while fractions estimated to be approximately 413 kDa exhibited the greatest ability to convert a substrate containing the editing site rps14 C80. RNA content peaked in the ≥ 670 kDa fraction. Treatment of active chloroplast extracts with RNase A abolished the relationship of editing activity with high‐MW fractions, suggesting a structural RNA component in native complexes. By immunoblotting, RIP9, OTP86, OZ1 and ORRM1 were shown to be present in active gel filtration fractions, though OZ1 and ORRM1 were mainly found in low‐MW inactive fractions. Active editing factor complexes were affinity‐purified using anti‐RIP9 antibodies, and orthologs to putative Arabidopsis thaliana RNA editing factor PPR proteins, RIP2, RIP9, RIP1, OZ1, ORRM1 and ISE2 were identified via mass spectrometry. Western blots from co‐IP studies revealed the mutual association of OTP86 and OZ1 with native RIP9 complexes. Thus, RIP9 complexes were discovered to be highly associated with C‐to‐U RNA editing activity and other editing factors indicative of their critical role in vascular plant editosomes.  相似文献   

20.
RNA editing plays an important role in the regulation of mitochondrial gene expression in flowering plants. In this study, we examined RNA editing of the mitochondrial genes cox2, atp6 and atp9 in five isonuclear alloplasmic male-sterile lines (IAMSLs) of rice to investigate whether different cytoplasmic types affect RNA editing. Although many editing sites were conserved among the three genes, we found that the editing efficiency of certain sites was significantly different between different IAMSLs or between IAMSLs and their corresponding cytoplasmic donor CMS lines. Furthermore, several editing sites were found to be either present or absent in certain IAMSLs and their corresponding CMS lines. These results indicate that nuclear loci, as well as unknown editing factors within the mitochondria of different cytoplasmic types, may be involved in RNA editing, and they suggest that RNA editing in plant mitochondria is affected by nucleo-cytoplasmic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号