首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamines and plant alkaloids   总被引:7,自引:0,他引:7  
Naturally occurring alkaloids are nitrogenous compounds that constitute the pharmacogenically active basic principles of flowering plants. Alkaloids are classified into several biogenically related groups. Tobacco alkaloids are metabolised from polyamines and diamines putrescine and cadaverine. N-methyl transferase is the first enzyme in alkaloid biosynthetic pathway which drives the flow of nitrogen away from polyamine biosynthesis to alkaloid biosynthesis. Arginine decarboxylase has been suggested to be primarily responsible for providing putrescine for nicotine synthesis. Tryptophan is the precursor of indole alkaloids. However, the biosynthetic pathway of tropane and isoquinoline alkaloids are not clear. Genes for several key biosynthetic enzymes like arginine decarboxylase, ornithine decarboxylase, putrescine N-methyl transferase and spermidine synthase, hyoscyamine 6 beta hydroxylase,tryptophan decarboxylase etc have been cloned from different plant species. These genes are regulated by plant hormones, light, different kinds of stress and elicitors like jasmonates and their strong expression is primarily in the cultured roots. In view of this, the axenic hairy root cultures induced by Agrobacterium rhizogenes have been utilised to synthesise secondary metabolites. The current development in the knowledge of alkaloid biosynthesis, particularly molecular analysis, has been discussed in this review that may help to open up new avenues of investigation for the researchers.  相似文献   

2.
The genome sequence of the hyperthermophilic methanogen Methanococcus jannaschii contains homologs of most genes required for spermidine polyamine biosynthesis. Yet genomes from neither this organism nor any other euryarchaeon have orthologs of the pyridoxal 5'-phosphate-dependent ornithine or arginine decarboxylase genes, required to produce putrescine. Instead, as shown here, these organisms have a new class of arginine decarboxylase (PvlArgDC) formed by the self-cleavage of a proenzyme into a 5-kDa subunit and a 12-kDa subunit that contains a reactive pyruvoyl group. Although this extremely thermostable enzyme has no significant sequence similarity to previously characterized proteins, conserved active site residues are similar to those of the pyruvoyl-dependent histidine decarboxylase enzyme, and its subunits form a similar (alphabeta)(3) complex. Homologs of PvlArgDC are found in several bacterial genomes, including those of Chlamydia spp., which have no agmatine ureohydrolase enzyme to convert agmatine (decarboxylated arginine) into putrescine. In these intracellular pathogens, PvlArgDC may function analogously to pyruvoyl-dependent histidine decarboxylase; the cells are proposed to import arginine and export agmatine, increasing the pH and affecting the host cell's metabolism. Phylogenetic analysis of Pvl- ArgDC proteins suggests that this gene has been recruited from the euryarchaeal polyamine biosynthetic pathway to function as a degradative enzyme in bacteria.  相似文献   

3.
We functionally identified the last remaining step in the plant polyamine biosynthetic pathway by expressing an Arabidopsis thaliana agmatine iminohydrolase cDNA in yeast. Inspection of the whole pathway suggests that the arginine decarboxylase, agmatine iminohydrolase, N-carbamoylputrescine amidohydrolase route to putrescine in plants was inherited from the cyanobacterial ancestor of the chloroplast. However, the rest of the pathway including ornithine decarboxylase and spermidine synthase was probably inherited from bacterial genes present in the original host cell, common ancestor of plants and animals, that acquired the cyanobacterial endosymbiont. An exception is S-adenosylmethionine decarboxylase, which may represent a eukaryote-specific enzyme form.  相似文献   

4.
Recent studies have reported that polyamines in the colonic lumen might affect animal health and these polyamines are thought to be produced by gut bacteria. In the present study, we measured the concentrations of three polyamines (putrescine, spermidine, and spermine) in cells and culture supernatants of 32 dominant human gut bacterial species in their growing and stationary phases. Combining polyamine concentration analysis in culture supernatant and cells with available genomic information showed that novel polyamine biosynthetic proteins and transporters were present in dominant human gut bacteria. Based on these findings, we suggested strategies for optimizing polyamine concentrations in the human colonic lumen via regulation of genes responsible for polyamine biosynthesis and transport in the dominant human gut bacteria.  相似文献   

5.
In rape leaf discs the response to osmotic stress has been found to be associated with increases in putrescine and 1,3-diaminopropane (an oxidation product of spermidine and/or spermine) and decreases in spermidine titers. In contrast, agmatine and spermine titers showed small changes while cadaverine accumulated massively. Similar results were observed in whole rape seedlings subjected to drought conditions. -DL-difluoromethylarginine (DFMA), a specific irreversible inhibitor of arginine decarboxylase, strongly inhibited polyamine accumulation in unstressed rape leaf discs, which suggested that the arginine decarboxylase pathway is constitutively involved in putrescine biosynthesis. In leaf discs treated under high osmotic stress conditions, both DFMA and DFMO (-DL-difluoromethylornithine, a specific and irreversible inhibitor of ornithine decarboxylase) inhibited the accumulation of polyamines. Although the stressed discs treated with DFMA had a lower concentration of putrescine than those treated with DFMO, we propose that under osmotic stress the synthesis of putrescine might involve both enzymes. DFMA, but not DFMO, was also found to inhibit cadaverine formation strongly in stressed explants. The effects on polyamine biosynthesis and catabolism of cyclohexylamine, the spermidine synthase inhibitor, aminoguanidine, the diamine-oxidase inhibitor and -aminobutyric acid, a product of putrescine oxidation via diamine oxidase or spermidine oxidation via polyamine oxidase were found to depend on environmental osmotic challenges. Thus, it appears that high osmotic stress did not block spermidine biosynthesis, but induced a stimulation of spermidine oxidation. We have also demonstrated that in stressed leaf discs, exogenous ethylene, applied in the form of (2-chloroethyl) phosphonic acid or ethephon, behaves as an inhibitor of polyamine synthesis with the exception of agmatine and diaminopropane. In addition, in stressed tissues, when ethylene synthesis was inhibited by aminooxyacetic acid or aminoethoxyvinylglycine, S-adenosylmethionine utilization in polyamine synthesis was not promoted. The relationships between polyamine and ethylene biosynthesis in unstressed and stressed tissues are discussed.  相似文献   

6.
The polyamines putrescine, spermidine, and spermine and their biosynthetic enzymes arginine decarboxylase, ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase are present in all parts of dormant potato (Solanum tuberosum L.) tubers. They are equally distributed among the buds of apical and lateral regions and in nonbud tissues. However, the breaking of dormancy and initiation of sprouting in the apical bud region are accompanied by a rapid increase in ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase activities, as well as by higher levels of putrescine, spermidine, and spermine in the apical buds. In contrast, the polyamine biosynthetic enzyme activities and titer remain practically unchanged in the dormant lateral buds and in the nonbud tissues. The rapid rise in ornithine decarboxylase, but not arginine decarboxylase activity, with initiation of sprouting suggests that ornithine decarboxylase is the rate-limiting enzyme in polyamine biosynthesis. The low level of polyamine synthesis during dormancy and its dramatic increase in buds in the apical region at break of dormancy suggest that polyamine synthesis is linked to sprouting, perhaps causally.  相似文献   

7.
In the present study we determined the effects of methionine, intermediates of polyamine catabolic pathways and inhibitors of either ethylene biosynthetic or polyamine catabolic pathways on polyamine accumulation in soybean leaves. Inhibitors to SAM decarboxylase and spermidine synthase, methylglyloxal-bis-(guanylhy-drazone) and cyclohexylamine, respectively, suggest that methionine may provide aminopropyl groups for the synthesis of polyamine via S-adenosylmethionine (SAM). Results from experiments that utilized a combination of compounds which altered either ethylene or polyamine biosynthesis, namely, aminoethoxyvinyl glycine, CoSO4, 2,5-norbornadiene, and CuSO4, suggest the two pathways compete for a common precursor. However, exogenous addition of ethylene (via ethephon treatments) had little or no effect on polyamine biosynthesis. Likewise, polyamine treatments had little or no effect on ethylene biosynthesis. These data suggest that there are few or no inhibitory effects from the end products of one pathway on the synthesis of the other. Data from leaves treated with metabolic intermediates in the catabolic pathway of polyamines and inhibitors of enzymes in the catabolic pathway, i.e. aminoguanidine, hydroxyethyldrazine and gabaculine, suggest that the observed increases in polyamine titers were not due to decreased catabolism of the polyamines. One catabolic intermediate, γ-aminobutyric acid (GABA), elevated putrescine, spermidine and spermine by 12-, 1.4-, and 2-fold, respectively, Ethylene levels decreased (25%) in GABA-treated leaves. This small decrease in ethylene could not account for such large increase in putrescine titers. Further analysis demonstrated that the GABA-mediated polyamine accumulation was inhibited by difluoromethylarginine, an inhibitor of arginine decarboxylase, but not by difluoromethylornithine, an inhibitor of ornithine decarboxylase. These data suggest that GABA directly or indirectly affects the biosynthesis of polyamines via arginine decarboxylase.  相似文献   

8.
9.
10.
The pathways for putrescine biosynthesis and the effects of polyamine biosynthesis inhibitors on the germination and hyphal development of Gigaspora rosea spores were investigated. Incubation of spores with different radioactive substrates demonstrated that both arginine and ornithine decarboxylase pathways participate in putrescine biosynthesis in G. rosea. Spermidine and spermine were the most abundant polyamines in this fungus. The putrescine biosynthesis inhibitors alpha-difluoromethylarginine and alpha-difluoromethylornithine, as well as the spermidine synthase inhibitor cyclohexylamine, slightly decreased polyamine levels. However, only the latter interfered with spore germination. The consequences of the use of putrescine biosynthesis inhibitors for the control of plant pathogenic fungi on the viability of G. rosea spores in soil are discussed.  相似文献   

11.
The trypanocidal activity of the ODC (ornithine decarboxylase) inhibitor DFMO (difluoromethylornithine) has validated polyamine biosynthesis as a target for chemotherapy. As DFMO is one of only two drugs used to treat patients with late-stage African trypanosomiasis, the requirement for additional drug targets is paramount. Here, we report the biochemical properties of TbSpSyn (Trypanosoma brucei spermidine synthase), the enzyme immediately downstream of ODC in this pathway. Recombinant TbSpSyn was purified and shown to catalyse the formation of spermidine from putrescine and dcSAM (decarboxylated S-adenosylmethionine). To determine the functional importance of TbSpSyn in BSF (bloodstream form) parasites, we used a tetracycline-inducible RNAi (RNA interference) system. Down-regulation of the corresponding mRNA correlated with a decrease in intracellular spermidine and cessation of growth. This phenotype could be complemented by expressing the SpSyn (spermidine synthase) gene from Leishmania major in cells undergoing RNAi, but could not be rescued by addition of spermidine to the medium due to the lack of a spermidine uptake capacity. These results therefore genetically validate TbSpSyn as a target for drug development and indicate that in the absence of a functional biosynthetic pathway, BSF T. brucei cannot scavenge sufficient spermidine from their environment to meet growth requirements.  相似文献   

12.
The mitogenic action of prolactin in Nb 2 node lymphoma cells was inhibited by two drugs which interfere with polyamine biosynthesis. At concentrations of 0.5 mM and above alpha-difluoromethyl ornithine (DFMO), which inhibits ornithine decarboxylase and the conversion of ornithine to putrescine, significantly attenuated the mitogenic effect of prolactin. This inhibition was prevented by the addition of putrescine, spermidine, or spermine to the culture medium. At concentrations of 1 microM and above methylglyoxal bis(guanylhydrazone) (MGBG), which inhibits S-adenosylmethionine decarboxylase and hence the conversion of putrescine to spermidine and spermine, abolished the mitogenic action of prolactin. This inhibition was prevented by the addition of spermidine or spermine, but not putrescine, to the culture medium. These studies show that ongoing polyamine biosynthesis is essential for prolactin to express its mitogenic effect in this lymphoma cell line.  相似文献   

13.
14.
1. The specificity of rat prostatic spermidine synthase and spermine synthase with respect to the amine acceptor of the propylamine group was studied. 2. Spermidine synthase could use cadaverine (1,5-diaminopentane) instead of putrescine, but the Km for cadaverine was much greater and the rate with 1mM-cadaverine was only 10% of that with putrescine. 1,3-Diaminopropane was even less active (2% of the rate with putrescine) and no other compound tested (including longer alpha,omega-diamines, spermidine and its homologues and monoacetyl derivatives) was active. 3. Spermine synthase was equally specific. The only compounds tested that showed any activity were 1,8-diamino-octane, sym-homospermidine, sym-norspermidine and N-(3-aminopropyl)-cadaverine, which at 1mM gave rates 2, 17, 3 and 4% of the rate with spermidine respectively. 4. The formation of polyamine derivatives of cadaverine and to a very small extent of 1,3-diaminopropane was confirmed by exposing transformed mouse fibroblasts to these diamines when synthesis of putrescine was prevented by alpha-difluoromethylornithine. Under these conditions the cells accumulated significant amounts of N-(3-aminopropyl)cadaverine and NN'-bis(3-aminopropyl)cadaverine when exposed to cadaverine and small amounts of sym-norspermidine and sym-norspermine when exposed to 1,3-diaminopropane.  相似文献   

15.
Endogenous polyamine content of the ectomycorrhizal fungus Paxillus involutus , as well as the activity of its biosynthetic enzymes in relation to mycelia ageing were investigated in this work. Polyamines in free, PCA-soluble and insoluble conjugated forms, are present in Paxillus involutus mycelia in relatively high amounts and the ratio of putrescine to spermidine is age-dependent. Both arginine- and ornithine-decarboxylases are present, but putrescine biosynthesis proceeds mostly via ornithine decarboxylase and decreases with the age of mycelia. There was a large release of free polyamines from mycelia which showed age-dependent features. Clear polyamine uptake was observed in 2-wk-old mycelia and no competition between putrescine and cadaverine was detected. Putrescine uptake seems to reduce ornithine decarboxylase activity, but does not affect arginine decarboxylase.  相似文献   

16.
Abstract— The concentrations of putrescine and the polyamines, spermidine and spermine, along with the specific activities of the enzymes involved in their biosynthesis, ornithine decarboxylase, S -adenosylmethionine decarboxylase and spermidine synthase have been measured in brain and liver of the developing Rhesus monkey from mid-gestation, through birth and neonatal life to maturity. The results suggest that it is an increased concentration of putrescine and an increased specific activity of ornithine decarboxylase which are associated with the rapid growth of fetal brain during the middle of gestation. By the end of two-thirds of gestation, both of these parameters have attained values similar to those found in mature brain. The concentration of spermidine in brain and the specific activities of S -adenosylmethionine decarboxylase and spermidine synthase are lower in fetal brain than adult brain and increase slowly after birth to reach values similar to those of the adult only after several months. These results provide additional evidence that in the mature brain spermidine serves some function other than one associated with rapid growth.
Fetal liver at mid-gestation was characterized by increased concentrations of both putrescine and spermidine and increased specific activities of the enzymes which synthesize them. By two-thirds of gestation, values similar to those found in adult liver had been attained. Liver has thus reached maturity with regard to polyamine metabolism by this time.  相似文献   

17.
Control of plant disease by perturbation of fungal polyamine metabolism   总被引:2,自引:0,他引:2  
The diamine putrescine and the polyamines spermidine and spermine are ubiquitous in nature and are essential for cell proliferation. Since polyamine biosynthesis in plants can start from either ornithine or arginine, while fungal polyamine biosynthesis appears to utilise only the ornithine route, it was suggested that specific inhibition of fungal polyamine biosynthesis should be lethal. Indeed, inhibitors of polyamine biosynthesis, e.g. the ornithine decarboxylase inhibitor α-difluoromethylornithine, have been shown to inhibit fungal growth in vitro and to control fungal infections on a variety of plants under glasshouse and field conditions. It is now known that polyamine analogues can perturb polyamine metabolism leading to powerful antiproliferative effects in cancer cells. This paper reviews the results of a research programme focused on the synthesis and evaluation of putrescine analogues as novel fungicides. A number of aliphatic, alicyclic and cyclic diamines have been shown to possess considerable fungicidal activity, but although many of these compounds perturb polyamine metabolism in fungal cells, such changes are not considered sufficient to account for the observed antifungal effects. More recent work on spermidine analogues is also described.  相似文献   

18.
The present study describes the distribution and properties of enzymes involved in arginine metabolism in Riftia pachyptila, a tubeworm living around deep sea hydrothermal vents and known to be engaged in a highly specific symbiotic association with a bacterium. The results obtained show that the arginine biosynthetic enzymes, carbamyl phosphate synthetase, ornithine transcarbamylase, and argininosuccinate synthetase are present in all of the tissues of the worm and in the bacteria. Thus, Riftia and its bacterial endosymbiont can assimilate nitrogen and carbon via this arginine biosynthetic pathway. The kinetic properties of ornithine transcarbamylase strongly suggest that neither Riftia nor the bacteria possess the catabolic form of this enzyme belonging to the arginine deiminase pathway, the absence of this pathway being confirmed by the lack of arginine deiminase activity. Arginine decarboxylase and ornithine decarboxylase are involved in the biosynthesis of polyamines such as putrescine and agmatine. These activities are present in the trophosome, the symbiont-harboring tissue, and are higher in the isolated bacteria than in the trophosome, indicating that these enzymes are of bacterial origin. This finding indicates that Riftia is dependent on its bacterial endosymbiont for the biosynthesis of polyamines that are important for its metabolism and physiology. These results emphasize a particular organization of the arginine metabolism and the exchanges of metabolites between the two partners of this symbiosis.  相似文献   

19.
The polyamine content of Escherichia coli is inversely related to the osmolality of the growth medium. The experiments described here demonstrate that a similar phenomenon occurs in mammalian cells. When grown in media of low NaCl concentration, HeLa cells and human fibroblasts were found to contain high levels of putrescine, spermidine, and spermine. The putrescine content of HeLa cells was a function of the osmolality of the medium, as shown by growing cells in media containing mannitol or additional glucose. External osmolality per se had no effect on the contents of spermidine and spermine. For all media, the total cellular polyamine content could be correlated with the activity of ornithine decarboxylase, the first enzyme in polyamine biosynthesis. Different levels of enzyme activity appear to result solely from variations in the rate of enzyme degradation. A sudden increase in a NaCl concentration produced rapid loss of ornithine decarboxylase activity and a gradual loss of putrescine and spermidine. A sudden decrease in NaCl concentration led to rapid and substantial increases in ornithine decarboxylase activity and putrescine.  相似文献   

20.
The polyamine content of Escherichia coli is inversely related to the osmolality of the growth medium. The experiments described here demonstrate that a similar phenomenon occurs in mammalian cells. When grown in media of low NaCl concentration, HeLa cells and human fibroblasts were found to contain high levels of putrescine, spermidine, and spermine. The putrescine content of HeLa cells was a function of the osmolality of the medium, as shown by growing cells in media containing mannitol or additional glucose. External osmolality per se had no effect on the contents of spermidine and spermine. For all media, the total cellular polyamine content could be correlated with the activity of ornithine decarboxylase, the first enzyme in polyamine biosynthesis. Different levels of enzyme activity appear to result solely from variations in the rate of enzyme degradation.A sudden increase in NaCl concentration produced rapid loss of ornithine decarboxylase activity and a gradual loss of putrescine and spermidine. A sudden decrease in NaCl concentration led to rapid and substantial increases in ornithine decarboxylase activity and putrescine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号