首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To study the excision of bacteriophage Mu at the DNA sequence level, the Mu-derived phage placMu3 was transposed to the transcribed but non-translated leader region of a plasmid-borne tetracycline (tet) resistance gene. Revertants (excision products) were then selected by Tet+ restoration of Tet+ and characterized. Of 21 independent Tet+ revertants, 17 contained simple deletions of most or all of placMu3, while the other four contained more complex rearrangements in which one end of placMu3 had been transposed, and most of the prophage had been deleted. The deletion endpoints were found in short direct repeats in each of the complex rearrangements and in 11 of the 17 simple deletion excisants. The results suggest models of slipped mispairing of template and nascent DNA strands facilitated by proteins of the Mu transposition machinery.  相似文献   

2.
The bacteriophage Mu is known to insert its DNA more or less randomly within the Escherichia coli chromosome, as do transposable elements, but unlike the latter, precise excision of the prophage, thereby restoring the original sequence, is not observed with wild-type Mu, although it has been reported with certain defective mutants. We show here that the mutant prophage Mu gem2ts can excise precisely from at least three separate loci —malT, Iac and thyA (selected as Mal+, Lac+ and Thy+, respectively). This excision occurs under permissive conditions for phage development, is observed in fully immune (c+) lysogens, and is independent of RecA and of Mu transposase. Mu gemts2 excision is invariably accompanied by reintegration of a Mu gem2ts prophage elsewhere in the chromosome, in the case of Mal+ revertants, this prophage is systematically located at 94min on the E. coli chromosome. Mu gem2ts excision therefore sheds some light on the long-standing paradox of the lack of precise Mu excisio.  相似文献   

3.
Escherichia coli K12 strains lysogenic for Mu gem2ts with the prophage inserted in a target gene (i.e., lacZ::Mu gem2ts lysogenic strains) revert to Lac+ by prophage precise excision with a relatively high frequency (about 1×10−6). The revertants obtained are still lysogens with the prophage inserted elsewhere in the bacterial chromosome. We have observed that, with the time of storage in stabs, bacterial cultures lysogenic for Mu gem2ts lose the ability to excise the prophage. The mutation responsible for this effect was co-transducible with the gyrB gene. After the removal of the prophage by P1 vir transduction from these strains, one randomly chosen clone, R3538, was further analyzed. It shows an increment of DNA supercoiling of plasmid pAT153, used as a reporter, and a reduced β-galactosidase activity. On the other hand, R3538 is totally permissive to both lytic and lysogenic cycles of bacteriophage Mu.  相似文献   

4.
Excision of transposable genetic elements from host DNA is different from the classical prophage lambda type of excision in that it occurs at low frequency and is mostly imprecise; only a minority of excision events restores the wild-type host sequences. In bacteriophage Mu, a highly efficient transposon, imprecise excision is 10-100 times more frequent than precise excision. We have examined a large number of these excision events by starting with mucts X mutants located in the Z gene of the lac operon of Escherichia coli. Mucts X mutants are defective prophages whose excision occurs at a measurable frequency. Imprecise excision was monitored by selecting for melibiose+ (Mel+) phenotype, which requires only a functioning lacY gene. Mel+ revertants exhibit an array of DNA rearrangements and fall in four main classes, the predominant one being comprised of revertants that have no detectable Mu DNA. Most of these revertants can further revert to Lac+. Perhaps 5 base-pair duplications, originally present at prophage-host junctions, are left in these lacZ-Y+ revertants, and they can be further repaired to lacZ+. Another class has, in addition to the loss of Mu DNA, deletions that extend generally, but not always, to only one side of the prophage. The other two classes of revertants, surprisingly, still have Mu DNA in the lacZ gene. One class has deletions in the Z gene, whereas, no deletions can be detected in the other. Many of the revertants in the last class can further revert to lacZ+, indicating that the lacY gene must have been turned on by a rearrangement within Mu DNA. Apparently, all of the detectable precise and most of the imprecise excision events require functioning of the Mu A gene. We suggest that a block in large-scale Mu replication allows the excision process to proceed.  相似文献   

5.
Summary We compared the transducing properties of Mucts62 and Mucts62/mini-Mu lysates, using Mu immune and non immune Rec+ and recA recipient strains. The Mu/mini-Mu lysates transduced all bacterial markers tested 10 times more efficiently than the Mucts62 lysates in Rec+ recipients. Most of the transductants obtained after infection with the Mu/mini-Mu lysates result from the substitution of the mutated gene of the recipient by the wild type allele from the donor, most probably carried on the gigantic variable end linked to the mini-Mu genome.Moreover the Mu/mini-Mu lysates gave a new type of Rec-independent transduction that we called mini-muduction. Mini-muduction requires the activity of Mu gene A and provides transductants which carry the transduced marker surrounded by two mini-Mu genomes similarly oriented, and inserted at random location in the recipient chromosome. The mini-Mu/transduced DNA/mini-Mu structures are able to transpose spontaneously, for instance into a transmissible plasmid, in the presence of Mu gene A product.  相似文献   

6.
Transfer of RP4::Mu plasmids to Agrobacterium tumefaciens   总被引:11,自引:0,他引:11  
Transfers of RP4::Mu plasmids from Escherichia coli to Agrobacterium tumefaciens are very inefficient in contrast to the very efficient transfer of RP4. Apparently, one or more Mu functions prevent RPR::Mu plasmids from establishing in some Gram-negatives other than E. coli. This problem was eliminated by the use of a mutant Mu prophage, Mu cts62r23, in RP4. Moreover, the transfer of RP4::Mu cts62r23 to the Agrobacterium strain C58 was found to be affected by a restriction modification system. The target for this restriction was located on Mu DNA and not on RP4 DNA. The plaque-forming phage production of Mu cts62r23 in Agrobacterium was found to be 106 times lower than in E. coli.  相似文献   

7.
The temperate bacteriophage Mu is a transposable element that can integrate randomly into bacterial DNA, thereby creating mutations. Mutants due to an integrated Mu prophage do not give rise to revertants, as if Mu, unlike other transposable elements, were unable to excise precisely. In the present work, starting with a lacZ::Muc62(Ts) strain unable to form Lac+ colonies, we cloned a lacZ+ gene in vivo on a mini-Mu plasmid, under conditions of prophage induction. In all lac+ plasmids recovered, the wild-type sequence was restored in the region where the Mu prophage had been integrated. The recovery of lacZ+ genes shows that precise excision of Mu does indeed take place; the absence of Lac+ colonies suggests that precise excision events are systematically associated with loss of colony-forming ability.  相似文献   

8.
Summary The replication of a spontaneous Kil mutant of bacteriophage Mu has been investigated. The Kil mutation (Mucts62-13/4), which was introduced into a defective prophage, is pleiotrophic, leading to the loss of also the Gam, Cim and Sot functions. The mutation is caused by an insertion with the characteristics of IS1, located just outside the B gene.Mucts62-13/4 phages form extremely small plaques on wildtype indicator strains. The replication of the insertion mutant as compared to Mucts62 is strongly reduced. Normal replication could be restored by relieving the polarity of the insertion or by complementation with defective prophages which express all early functions. Apparently, early genes other than A and B are involved in normal Mu DNA replication.  相似文献   

9.
The reversion behavior of pleiotropic carbohydrate mutants, previously designated as ctr, was studied. The mutants revert to complete restoration of the wild-type phenotype, as well as to a spectrum of partial wild-type phenotypes. Lac+ reversions were found in the lac region (11 min) and some Mal+ reversions occurred at malB (79 min), at a distance from the site of the ctr mutations (46 to 47 min). About one-third of Lac+ and Mal+ revertants were constitutive for uptake of their respective substrates, and one-third modified for inducibility. The remaining third were not distinguishable from wild type. Induction of a ctr mutation in a lac constitutive strain, either operator or repressor mutant, did not affect lactose metabolism. A polar-like ctr mutant, deficient in both enzyme I and heat-stable protein of the phosphoenolpyruvate-dependent phosphotransferase strain was also described. Partial revertants of ctr were still found to lack enzyme I.  相似文献   

10.
The tyrT gene codes for one of the tyrosirie tRNA species. Using the Casadabatn (1976a) technique, strains of Escherichia coli were isolated in which the lac structural genes are fused to the promoter of the tyrT gene. This procedure involved obtaining a number of insertions of phage Mu DNA in the tyrT gene, lysogenizing the Mu insertion strains with a λplac-Mu hybrid phage, and selecting Lac+ derivatives of such lysogens. In a number of Lac+ strains thus obtained, the synthesis of β-galactosidase, the product of the lacZ gene, is regulated in a similar fashion to the synthesis of stable RNA. The fusion strains were shown directly to be tyrT-lac fusions by demonstrating that a Mu insertion in the tyrT gene when genetically recombined into the presumed fusion, inactivates the expression of the lac genes. This result shows that tyrT gene sequences are fused to and control the expression of the lac genes in these strains. This is the first report in which genes which code for proteins have been fused to a stable RNA gene in vivo.  相似文献   

11.
Survival of UV-irradiated phage λ is increased when the host is lysogenic for a homologous heteroimmune prophage such as λimm434 (prophage reactivation). Survival can also be increased by UV-irradiating slightly the non-lysogenic host (UV reactivation).Experiments on prophage reactivation were aimed at evaluating, in this recombination process, the respective roles of phage and bacterial genes as well as that of the extent of homology between phage and prophage.To test whether UV reactivation was dependent upon recombination between the UV-damaged phage and cellular DNAs, lysogenic host cells were employed. Such hosts had thus as much DNA homologous to the infecting phage as can be attained. Therefore, if recombination between phage and host DNAs was involved in this repair process, it could clearly be evidenced.By using unexposed or UV-exposed host cells of the same type, prophage reactivation and UV reactivation could be compared in the same genetic background.The following results were obtained: (1) Prophage reactivation is strongly decreased in a host carrying recA mutations but quite unaffected by mutation lex-I known to prevent UV reactivation; (2) In the absence of the recA+ function, the red+ but not the int+ function can substitute for recA+ to produce prophage reactivation, although less efficiently; (3) Prophage reactivation is dependent upon the number of prophages in the cell and upon their degree of homology to the infecting phage. The presence in a recA host of two prophages either in cis (on the chromosome) or in trans (on the chromosome and on an episome) increases the efficiency of prophage reactivation; (4) Upon prophage reactivation there is a high rate of recombination between phage and prophage but no phage mutagenesis; (5) The rate of recombination between phage and prophage decreases if the host has been UV-irradiated whereas the overall efficiency of repair is increased. Under these conditions UV reactivation of the phage occurs as in a non-lysogen, as attested by the high rate of mutagenesis of the restored phage.These results demonstrate that UV reactivation is certainty not dependent upon recombination between two pre-existing DNA duplexes. The hypothesis is offered that UV reactivation involves a repair mechanism different from excision and recombination repair processes.  相似文献   

12.
Abstract: Mutations induced by the integration of a Mu gem 2ts mutant prophage can revert at frequencies around 1 × 10−6, more than 104-fold higher than that obtained with Mu wild-type. Several aspects characterize Mu gem 2ts precise excision: (i) the phage transposase is not involved; (ii) the RecA protein is not necessary; and (iii) revertants remain lysogenic with the prophage inserted elsewhere in the host genome. In addition, prophage re-integration seems to be non-randomly distributed, whereas Mu insertion into the host genome is a transposition event without any sequence specificity. In this paper, we describe that the site of re-integration somehow depends on the original site of insertion. Two alternative models are proposed to explain the strong correlation between donor and receptor sites.  相似文献   

13.
Summary Phage Mud1 cts (Apr lac), or Mud1, insertion mutations may be accompanied by adjacent deletion formation which can complicate use of lac fusions generated with this phage for gene regulatory studies. As for phage Mu insertion mutations, phage Mud1 insertions fail to revert at significant frequency (whether or not accompanied by an adjacent deletion). We describe isolation of revertible (X mutant) derivatives of phage Mud1 in Salmonella typhimurium. The X mutant derivatives allow use of reversion as a simple test to determine whether a Mud1 insertion has occurred precisely without an adjacent deletion that may have fused the lac genes to a promoter outside of the gene of interest. In addition, a simple method for stabilizing Mud1 generated lac fusions against subsequent transposition is described.  相似文献   

14.
The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F′lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F′lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F′lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F′lac copies divide very little under selection but have enough energy to replicate their F′lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced.  相似文献   

15.
Summary The generalized transduction by bacteriophage Mu was found to be preferential for the 0–1 min segment of the E. coli K12 chromosome. This transduction pattern is obtained with phage lysates grown on all F-, F+ and Hfr tested, and is not marker-specific.Phages grown by both lytic infection and by heat induction of prophages at different locations of the host's chromosome show the same transduction pattern, indicating that generation of transducing DNA does not directly depend on excision events. Conjugation of independently obtained Muc +-lysogenic strains of HfrC with a multiauxotrophic F- recipient strain lysogenic for a Mucts62 prophage, shows that transfer of the temperature-resistance character (Muc +) is not preferentially linked to the 0–1 min segment. The lysogenizing integrations do therefore not take place within the segment preferentially transduced by the phage.A model1 for the generation of the transducing DNA is proposed, which assumes that for its replication, Mu DNA is integrated close to the 0–1 min segment of the host chromosome, which is then preferentially replicated and packaged into the phage heads.  相似文献   

16.
R H Chesney  J R Scott 《Plasmid》1978,1(2):145-163
Like other plasmids, the P1 and P7 prophages suppress E. coli dnaA(Ts) mutations by integrating into the host chromosome. This conclusion is supported by three lines of evidence: (1) Alkaline sucrose gradients reveal the absence of plasmid DNA in suppressed lysogens; (2) the prophage is linked to host chromosomal markers in conjugation; and (3) auxotrophs whose defect is linked to the prophage are found among suppressed colonies. No phage or bacterial mutation is required for suppression. Integrative suppression by P1 and P7, unlike suppression by F, does not require the host recA+ function. Among suppressed P7 lysogens are some that do not produce phage; these contain defective prophages. The genetic extent of the deletions contained by these defective prophages delineates the prophage regions which are not necessary for suppression of dnaA(Ts). The possible mechanisms of integration and deletion formation are discussed.  相似文献   

17.
A mutant of Eschirichia coli B/r designated mfd has drastically reduced ability to exhibit “mutation frequency decline” (MFD) the irreversible loss of potential suppressor mutations which occurs when protein synthesis is briefly inhibited after irradiation with U.V. We have found that the initial rate of thymine dimer excision in the mfd mutant is only about one-third that of its mfd+ parent strain after a UV dose of 400 erg/mm2. The yield of UV-induced Tyr+ revertants is 4–10 times higher in the mfd strain than in the mfd+ strain. This is comparable to the level of UV-mutability in the mfd+ strain in the presence of caffeine, an inhibitor of dimer excision. UV-mutability, prophage induction and Weigle reactivation of irradiated λ phage occur to a greater extent at low UV doses (10–50 erg/mm2) in the mfd strain compared to the mfd+ strain. We propose that the slow excision repair in the mfd mutant results in a shift in the induction threshold for these UV-inducible functions toward lower UV doses.  相似文献   

18.
The ovo locus is required for the maintenance of the female germ line in Drosophila melanogaster. In the absence of an ovo+ gene, males are completely normal but females have no germ-line stem cells. Three dominant mutations at the ovo locus, called ovoD, were observed to revert towards recessive alleles at high frequency when ovoD males were crossed to females of the strain y v f mal. We have found that this strain contains an inordinately high number of gypsy transposable elements, and crossing it with the ovoD strains results in the mobilization of both gypsy and copia, with high-frequency insertions into the ovo locus: of 16 revertants examined 12 have gypsy and four have copia inserted at 4E, the ovo cytological site. Using gypsy DNA as a tag we have cloned 32 kb of wild-type DNA sequences surrounding a gypsy insertion and characterized molecular rearrangements in several independent revertants: in 10 of them gypsy appears to be inserted into the same site. The orientation of gypsy is strictly correlated with whether the neighbouring lozenge-like mutation appears in the revertants. A distal limit of the ovo locus was molecularly determined from the breakpoint of a deletion affecting closely flanking regions.  相似文献   

19.
Identification of a gene for alpha-tubulin in Aspergillus nidulans.   总被引:24,自引:0,他引:24  
N R Morris  M H Lai  C E Oakley 《Cell》1979,16(2):437-442
This paper demonstrates that revertants of temperature-sensitive benA (β-tubulin) mutations in Aspergillus nidulans can be used to identify proteins which interact with β-tubulin. Three benomyl-resistant benA (β-tubulin) mutants of Aspergillus nidulans, BEN 9, BEN 15 and BEN 19, were found to be temperature-sensitive (ts?) for growth. Temperature sensitivity co-segregated with benomyl resistance among the progeny of outcrosses of BEN 9, 15 and 19 to a wild-type strain, FGSC#99, indicating that temperature sensitivity was caused by mutations in the benA gene in these strains. Eighteen revertants to ts+ were isolated by selection at the restrictive temperature. Four had back-mutations in the benA gene and fourteen carried extragenic suppressor mutations. Two of the back-mutated strains had β-tubulins which differed from the β-tubulins of their parental strains by one (1?) or two (2?) negative charges on two-dimensional gel electrophoresis. Although the β-tubulins of the extragenic suppressor strains were all electrophoretically identical to those of the parental strains, one of the suppressor strains, BEN 9R7, had an electrophoretic abnormality in α1-tubulin (1+). A heterozygous diploid between this strain and a strain with wild-type α1-tubulin was found to have both wild-type and mutant (1+) α1-tubulins. This experiment rules out post-translational modification as a possible cause of the α1-tubulin abnormality. Thus the suppressor mutation in BEN 9R7 must be in a structural gene for α1-tubulin. We propose that this gene be designated tubA to denote that it is a gene for α1-tubulin in A. nidulans.  相似文献   

20.
Summary The fluorescent dye, diamidinophenylindole-dihydrochloride (DAPI) can be added to CsCl gradients to enhance the density resolution of DNA species, independent of their topological configurations. When Proteus mirabilis and Escherichia coli strains carrying an RP4::Mucts plasmid were examined with the use of such a technique, it was found that after thermal induction of the prophage essentially all of the plasmid DNA became associated with the chromosome. This quantitative association is detergent-RNase-and pronase-resistant and dependent on the expression of Mu genes. The association is temporally, and probably functionally, correlated with the onset of Mu DNA replication. Genetic studies with F'::mini Mu plasmids indicate that some of the association results in stable Hfr formation, and does not require the product of Mu gene B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号