首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
为构建能够同时高效利用五碳糖和六碳糖发酵产D-乳酸的重组大肠杆菌工程菌,以能高效利用五碳糖发酵产D-乳酸的大肠杆菌工程菌E.coli JH13为出发菌株,通过Red同源重组技术敲除葡萄糖跨膜转运基因pts G。实验结果表明,pts G缺陷菌株E.coli JH15在10%混合糖(5%葡萄糖和5%木糖)培养基中发酵,可同时利用五碳糖和六碳糖以完成发酵;而对照菌葡萄糖消耗完才利用木糖,发酵结束还有18 g/L木糖残留;JH15乳酸产量为83.04 g/L,相比于对照菌株提高了25.86%;在稻草秸秆水解液中发酵,JH15同时利用葡萄糖、木糖和L-阿拉伯糖,乳酸产量为25.15 g/L,转化率为86.42%。JH15作为能利用混合糖同步发酵产D-乳酸的大肠杆菌工程菌,它的成功构建为利用廉价的木质纤维素水解物为原料发酵生产D-乳酸提供参考依据。  相似文献   

2.
重组运动发酵单胞菌的构建及木糖利用特性研究   总被引:2,自引:0,他引:2  
将大肠杆菌(Escherichia coli)木糖代谢的关键酶基因.引入到运动发酵单胞菌中,获得能利用木糖发酵生产乙醇的重组工程菌株PZM.混合糖发酵过程中,重组菌利用葡萄糖和木糖生成乙醇的效率分别达到理论值的81.2%和63.1%.  相似文献   

3.
利用五碳糖产高纯度L-乳酸的大肠杆菌基因工程菌的构建   总被引:1,自引:0,他引:1  
[目的]本研究以已敲除多个产杂酸酶基因的大肠杆菌(Escherichia coli)乙醇工程菌SZ470(△frdBC △ldhA △ackA △focA-pflB △pdhR::pflBp6-pflBrbs-aceEF-lpd)为起始菌株,进一步敲除其乙醇脱氢酶(alcohol dehydrogenase,ADH)基因,同时插入带有自身启动子的乳酸片球菌(Pediococcus acidilactici)的L-乳酸脱氢酶(L-lactate dehydrogenase,LLDH)基因,构建可利用五碳糖同型发酵L-乳酸重组大肠杆菌.[方法]利用λ噬菌体Red重组系统构建乙醇脱氢酶基因(adhE)缺失菌株Escherichia coli JH01,并克隆P.acidilactici的ldhL基因,利用染色体插入技术将其整合到JH01基因组,构建产L-乳酸大肠杆菌基因工程菌Escherichia coli JH12,利用无氧发酵15 L发酵罐测定重组菌株L-乳酸产量.[结果]工程菌JH12在15 L发酵罐中以6%的葡萄糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为1.46 g/(L·h),乳酸生产强度为1.14 g/(L·h),乳酸的产量达到41.13 g/L.发酵产物中未检测到琥珀酸、甲酸的生成,仅有少量乙酸生成,L-乳酸纯度达95.69%(L-乳酸在总发酵产物的比率).工程菌JH12以6%的木糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为0.88 g/(L·h),乳酸生产强度为0.60 g/(L·h),乳酸的产量达到34.73 g/L.发酵产物中杂酸少,乳酸的纯度高达98%.[结论]本研究通过基因敲除、染色体插入及无氧进化筛选获得一株产L-乳酸的大肠杆菌工程菌JH12,该菌株不需利用外源质粒,稳定性好,可利用五碳糖进行发酵,发酵产物中杂酸少,L-乳酸的纯度高.本研究为L-乳酸大肠杆菌工程菌的构建提供一定的技术支持,同时也为大肠杆菌L-乳酸的工业化生产提供了参考依据.  相似文献   

4.
前期通过基因工程手段,构建了一株大肠杆菌工程菌E.coli WL204,该菌株可以有效利用木糖为底物发酵产L-乳酸。以废纸为发酵原料,研究该菌株利用木质纤维素发酵产乳酸的特性。原料以稀硫酸预处理后,经纤维素酶酶解,得到的水解液用Ca(OH)2脱毒后,接种E.coli WL204,在7L发酵罐中发酵72h,每100g废纸可以产生31g乳酸,糖酸转化率为79%。结果表明,E.coli WL204可以木质纤维素原料为底物发酵生产L-乳酸,具有一定的工业化开发潜力。  相似文献   

5.
代谢工程大肠杆菌利用甘油高效合成L-乳酸   总被引:2,自引:0,他引:2  
以甘油为碳源高效合成L-乳酸有助于推进油脂水解产业和生物可降解材料制造业的共同发展。为此,首先分别从凝结芽胞杆菌Bacillus coagulans CICIM B1821和大肠杆菌Escherichia coli CICIM B0013中克隆了L-乳酸脱氢酶基因BcoaLDH和D-乳酸脱氢酶 (LdhA) 的启动子片段PldhA。将两条DNA片段连接组成了表达盒PldhA-BcoaLDH。然后将上述表达盒通过同源重组删除FMN为辅酶的L-乳酸脱氢酶编码基因lldD的同时克隆入ldhA基因缺失菌株E. coli CICIM B0013-080C (ack-pta pps pflB dld poxB adhE frdA ldhA)的染色体上,获得了L-乳酸高产菌株E. coli CICIM B0013-090B (B0013-080C,lldD::PldhA-BcoaLDH)。考察了菌株CICIM B0013-090B不同培养温度下代谢利用甘油和合成L-乳酸的特征后,建立并优化了一种新型L-乳酸变温发酵工艺。在7 L发酵罐上,发酵27 h,积累L-乳酸132.4 g/L,产酸强度4.90 g/(L·h),甘油到L-乳酸的得率为93.7%,L-乳酸的光学纯度达到99.95%。  相似文献   

6.
为了使谷氨酸棒杆菌较好地利用木糖生产有机酸,将来自Escherichia coli K-12的木糖异构酶基因xylA构建到表达载体pXMJ19中,导入Corynebacterium glutamicum ATCC13032Δldh中,成功表达了该酶基因。结果表明:重组菌株在以木糖为唯一C源进行发酵时,木糖的消耗速率为0.54 g/(L·h),木糖异构酶比酶活约为0.54 U/mL;在以木糖和葡萄糖的混合糖为C源进行发酵时,菌株优先利用葡萄糖,在葡萄糖完全消耗后,菌株开始有效利用木糖;以木糖为唯一C源进行两阶段发酵时,琥珀酸的收率可达(0.62±0.003)g/g。  相似文献   

7.
【目的】拓宽高产聚-β-羟基丁酸酯(poly-β-hydroxybutyrate,PHB)罗氏真养菌(Ralstonia eutropha)W50的碳源使用范围,使其获得D-木糖代谢能力。【方法】运用PCR技术扩增大肠杆菌(Escherichia coli)K-12W3110来源的D-木糖转运蛋白基因xylE,利用同源重组技术将xylE基因整合到R.eutropha W50的染色体上构建菌株W50-E。运用PCR技术扩增E.coli K-12 W3110来源的D-木糖代谢基因xylAB和R.eutropha H16来源的PHA合酶基因phaC1的启动子片段P pha C1,同表达载体连接后构建重组质粒p1-AB。将重组质粒分别转入菌株R.eutropha W50和W50-E中构建工程菌株W50-AB和W50-EAB。通过摇瓶发酵研究W50-AB和W50-EAB的D-木糖代谢特性。【结果】酶活分析结果表明,xylA和xylB基因在菌株R.eutropha W50中得到表达。摇瓶发酵结果表明,W50-AB在含0.1 mol/L D-木糖的基础发酵培养基中的最大比生长速率为0.025 h-1,在含0.01 mol/L D-木糖的基础发酵培养基中没有生长;W50-EAB在含0.01 mol/L D-木糖的基础发酵培养基中表现出一定生长,在含0.1 mol/L D-木糖的基础发酵培养基中最大比生长速率为0.035 h-1。PHB含量分析结果表明,摇瓶发酵终点时,W50-AB和W50-EAB菌株内的PHB含量分别为细胞干重的15.07±1.01%和15.07±1.64%,其相应的D-木糖-PHB转化率分别为0.0920 g·g-1和0.0838 g·g-1,低于两重组菌株利用葡萄糖发酵的糖-PHB转化率(0.22 g·g-1)。另外,重组菌株W50-AB和W50-EAB在含葡萄糖(0.01 mol/L)和D-木糖(0.09 mol/L)的混合糖培养基中的发酵结果表明,两重组菌株均表现出更高的生长速率和D-木糖消耗速率以及胞内PHB积累量。【结论】来源于E.coli K-12W3110菌株的xylAB基因的表达使R.eutropha W50获得了一定的D-木糖代谢能力,通过D-木糖转运蛋白基因xylE的表达能提高菌株的D-木糖代谢能力,同时重组菌株利用D-木糖能积累一定量PHB。  相似文献   

8.
目的:研究大肠杆菌以木糖为碳源发酵产琥珀酸。方法:首先比较了实验室保藏的7种野生型大肠杆菌利用木糖发酵产琥珀酸的产量和得率,结果:表明野生型菌株琥珀酸对木糖的得率集中在0.34g/g~0.53g/g之间,得率较低,副产物主要为乳酸、乙酸。然后选取其中2株菌(E.coli MG1655与E.coli C-1)进行基因敲除,构建了ldhA和pflB双基因缺失的MLB和CLB菌株,以减少副产物的积累。两阶段摇瓶发酵结果表明,琥珀酸得率从0.40g/g分别提高到了0.89g/g及0.90g/g,而产量分别从4.92g/L、5.58g/L提高到11.52g/L、11.81g/L。结论:通过基因敲除后,大肠杆菌能够利用木糖发酵产琥珀酸,琥珀酸得率可以达到0.90g/g。  相似文献   

9.
常压室温等离子体诱变高效利用木糖产丁二酸菌株   总被引:1,自引:0,他引:1  
大肠杆菌Escherichia coli AFP111是E. coli NZN111 (△pflAB△ldhA) 的ptsG自发突变株,其转化1 mol的木糖合成丁二酸的过程中净产生1.67 mol ATP,但是转化1 mol的木糖合成丁二酸的过程中实际需要2.67 mol ATP,因此在厌氧条件下,ATP的供给不足导致E. coli AFP111不能代谢木糖。采用常压室温等离子体射流诱变产丁二酸大肠杆菌菌株,在厌氧条件下,利用以木糖为碳源的M9培养基,筛选得到一株可以代谢木糖并积累丁二酸的突变株DC111。该突变菌株在发酵培养基中,72 h内可以消耗10.52 g/L木糖产6.46 g/L的丁二酸,丁二酸的得率达到了0.78 mol/mol。而且突变株中伴有ATP产生的磷酸烯醇式丙酮酸羧激酶 (PCK) 途径得到加强,PCK的比酶活相对于出发菌株提高了19.33倍,使得其在厌氧条件下能够有足够的ATP供给来代谢木糖发酵产丁二酸。  相似文献   

10.
代谢工程改造大肠杆菌合成D-1,2,4-丁三醇   总被引:1,自引:1,他引:0  
【目的】D-1,2,4-丁三醇是一种四碳的多元醇,在军事和医药领域具有广泛的应用。为实现生物法一步转化生产D-1,2,4-丁三醇,对Escherichia coli W3100的木糖代谢途径进行改造。【方法】将来源于柄杆菌的D-木糖脱氢酶基因xylB和恶臭假单胞菌的苯甲酰甲酸脱羧酶基因mdlC克隆至E.coli W3100,得到重组菌E.coli(pEtac-mdlC-tac-xylB)。在此基础上对重组菌代谢木糖合成D-1,2,4-丁三醇的能力进行考察。【结果】在30°C下,以30 g/L D-木糖为底物,重组菌E.coli(pEtac-mdlC-tac-xylB)的D-1,2,4-丁三醇产量达到了0.9 g/L,摩尔转化率为4%。【结论】实现了D-1,2,4-丁三醇的一步法发酵生产,为国内开展相关研究奠定了坚实的基础。  相似文献   

11.
代谢改造克雷伯氏菌合成D-1,2,4-丁三醇   总被引:1,自引:1,他引:0  
【背景】D-1,2,4-丁三醇(D-1,2,4-butanetriol,BT)是一种重要的四碳多元醇,应用范围广,以木糖为底物的四步生化反应是目前最高效的BT生物合成路线。但大肠杆菌宿主存在严重的碳代谢抑制,限制了工程菌在木糖葡萄糖混合糖下的生长和BT合成。然而克雷伯氏菌具有生长速度更快、葡萄糖木糖混合糖利用效果好等优点。【目的】在碳代谢抑制效应较弱的克雷伯氏菌中构建以木糖为底物的BT合成途径,以提高混合糖下BT合成能力。【方法】将来源于Clostridium crescenti的木糖脱氢酶基因xdh和来源于Lactococcus lactis的2-酮异戊酸脱羧酶基因kivD及来源于Escherichia coli W3110的木糖酸脱水酶基因yjhG克隆至KlebsiellapneumoniaeZG25,得到重组菌K.pneumoniae ZG25-BT,对重组菌进行培养条件和培养基优化,进一步敲除xylA以提高BT产量。【结果】在37°C、200 r/min、接种量1%、诱导时间2 h、添加10.0 g/L CaCO3控制pH条件下,敲除xylA的重组菌在1.5倍LB培养基中以30.0 g/L木糖和10.0 g/L葡萄糖为底物,BT的产量达到4.52 g/L,摩尔转化率为0.21mol/mol,收率为15%,较优化前分别提高150%、62%和67%。【结论】实现了BT在K.pneumoniaeZG25中的发酵生产,同时通过培养条件和培养基的优化及xylA的敲除提高了BT合成能力,为进一步实验奠定了基础。  相似文献   

12.
对重组大肠杆菌JH16利用木糖产高纯度的三一乳酸进行研究。通过无氧管驯化EscherwhiacdiJH12菌株得到E.coliJH16,驯化后的菌株茵体浓度提高了31%,乙酸积累减少了43%;在摇瓶中考察不同Mg2+浓度对EcoliJHl6产三一乳酸的影响,确定最适Mg2+质量浓度为0.25g/L;EcoEJH16以60g/L木糖为C源,在7L全自动发酵罐中添加0.25g/LMg2+,乳酸积累量提高了18%,达38.18g/L,乳酸纯度高达95%;E.coliJH16在30g/L木糖和30g/L葡萄糖混合C源中,优先利用葡萄糖,当葡萄糖质量浓度低于1.56g/L后,菌体开始利用木糖进行乳酸发酵,最终得到39g/L乳酸。  相似文献   

13.
In order to achieve efficient D-lactic acid fermentation from a mixture of xylose and glucose, the xylose-assimilating xylAB operon from Lactobacillus pentosus (PXylAB) was introduced into an L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum (ΔldhL1-xpk1::tkt-Δxpk2) strain in which the phosphoketolase 1 gene (xpk1) was replaced with the transketolase gene (tkt) from Lactococcus lactis, and the phosphoketolase 2 (xpk2) gene was deleted. Two copies of xylAB introduced into the genome significantly improved the xylose fermentation ability, raising it to the same level as that of ΔldhL1-xpk1::tkt-Δxpk2 harboring a xylAB operon-expressing plasmid. Using the two-copy xylAB integrated strain, successful homo-D-lactic acid production was achieved from a mixture of 25 g/l xylose and 75 g/l glucose without carbon catabolite repression. After 36-h cultivation, 74.2 g/l of lactic acid was produced with a high yield (0.78 g per gram of consumed sugar) and an optical purity of D-lactic acid of 99.5%. Finally, we successfully demonstrated homo-D-lactic acid fermentation from a mixture of three kinds of sugar: glucose, xylose, and arabinose. This is the first report that describes homo-D-lactic acid fermentation from mixed sugars without carbon catabolite repression using the xylose-assimilating pathway integrated into lactic acid bacteria.  相似文献   

14.
本文对粘质沙雷氏菌发酵生产D-乳酸进行了研究。以粘质沙雷氏菌G1(Serratia marcescens G1)为出发菌种,摇瓶试验确定了发酵培养方式:前12 h为菌体生长阶段,有氧培养,温度28℃,pH值7.0;后36 h为D-乳酸合成积累阶段,无氧培养,温度44℃,pH值6.0。且发现使用葡萄糖为碳源时更有利于D-乳酸的合成积累。采用缺失2,3-丁二醇合成能力的基因工程菌株R1为出发株,经筛选后得到耐受较高浓度乳酸盐的菌株R150,以R150为发酵菌种,在3.7 L发酵罐上采用两阶段发酵法,并通过增加起始菌体浓度的方法,发酵生成的D-乳酸浓度达到83.5 g/L,光学纯度达到98.9%。本研究成果为使用粘质沙雷氏菌发酵生产D-乳酸的深入研究打下了基础。  相似文献   

15.
The efficient diversion of pyruvate from normal fermentative pathways to ethanol production in Klebsiella oxytoca M5A1 requires the expression of Zymomonas mobilis genes encoding both pyruvate decarboxylase and alcohol dehydrogenase. Final ethanol concentrations obtained with the best recombinant, strain M5A1 (pLOI555), were in excess of 40 g/liter with an efficiency of 0.48 g of ethanol (xylose) and 0.50 g of ethanol (glucose) per g of sugar, as compared with a theoretical maximum of 0.51 g of ethanol per g of sugar. The maximal volumetric productivity per hour for both sugars was 2.0 g/liter. This volumetric productivity with xylose is almost twice that previously obtained with ethanologenic Escherichia coli. Succinate was also produced as a minor product during fermentation.  相似文献   

16.
The efficient diversion of pyruvate from normal fermentative pathways to ethanol production in Klebsiella oxytoca M5A1 requires the expression of Zymomonas mobilis genes encoding both pyruvate decarboxylase and alcohol dehydrogenase. Final ethanol concentrations obtained with the best recombinant, strain M5A1 (pLOI555), were in excess of 40 g/liter with an efficiency of 0.48 g of ethanol (xylose) and 0.50 g of ethanol (glucose) per g of sugar, as compared with a theoretical maximum of 0.51 g of ethanol per g of sugar. The maximal volumetric productivity per hour for both sugars was 2.0 g/liter. This volumetric productivity with xylose is almost twice that previously obtained with ethanologenic Escherichia coli. Succinate was also produced as a minor product during fermentation.  相似文献   

17.
大肠杆菌NZN111厌氧发酵的主要产物为丁二酸,是发酵生产丁二酸的潜力菌株。但是由于敲除了乳酸脱氢酶的编码基因 (ldhA) 和丙酮酸甲酸裂解酶的编码基因 (pflB),导致辅酶NADH/NAD+不平衡,厌氧条件下不能利用葡萄糖生长代谢。构建烟酸转磷酸核糖激酶的重组菌Escherichia coli NZN111/pTrc99a-pncB,在厌氧摇瓶发酵过程中通过添加0.5 mmol/L的烟酸、0.3 mmol/L的IPTG诱导后重组菌的烟酸转磷酸核糖激酶 (Nicotinic acid phosphor  相似文献   

18.
The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5alpha (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5alpha (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli.  相似文献   

19.
Xylonate is a valuable chemical for versatile applications. Although the chemical synthesis route and microbial conversion pathway were established decades ago, no commercial production of xylonate has been obtained so far. In this study, the industrially important microorganism Escherichia coli was engineered to produce xylonate from xylose. Through the coexpression of a xylose dehydrogenase (xdh) and a xylonolactonase (xylC) from Caulobacter crescentus, the recombinant strain could convert 1 g/L xylose to 0.84 g/L xylonate and 0.10 g/L xylonolactone after being induced for 12 h. Furthermore, the competitive pathway for xylose catabolism in E. coli was blocked by disrupting two genes (xylA and xylB) encoding xylose isomerase and xylulose kinase. Under fed-batch conditions, the finally engineered strain produced up to 27.3 g/L xylonate and 1.7 g/L xylonolactone from 30 g/L xylose, about 88% of the theoretical yield. These results suggest that the engineered E. coli strain has a promising perspective for large-scale production of xylonate.  相似文献   

20.
Fermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol. Elementary mode analysis was applied to design an Escherichia coli strain optimized for isobutanol production under strictly anaerobic conditions. The central metabolism of E. coli was decomposed into 38,219 functional, unique, and elementary modes (EMs). The model predictions revealed that during anaerobic growth E. coli cannot produce isobutanol as the sole fermentative product. By deleting 7 chromosomal genes, the total 38,219 EMs were constrained to 12 EMs, 6 of which can produce high yields of isobutanol in a range from 0.29 to 0.41 g isobutanol/g glucose under anaerobic conditions. The remaining 6 EMs rely primarily on the pyruvate dehydrogenase enzyme complex (PDHC) and are typically inhibited under anaerobic conditions. The redesigned E. coli strain was constrained to employ the anaerobic isobutanol pathways through deletion of 7 chromosomal genes, addition of 2 heterologous genes, and overexpression of 5 genes. Here we present the design, construction, and characterization of an isobutanol-producing E. coli strain to illustrate the approach. The model predictions are evaluated in relation to experimental data and strategies proposed to improve anaerobic isobutanol production. We also show that the endogenous alcohol/aldehyde dehydrogenase AdhE is the key enzyme responsible for the production of isobutanol and ethanol under anaerobic conditions. The glycolytic flux can be controlled to regulate the ratio of isobutanol to ethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号