首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data are presented which reveal that ubiquinone (Q)-mediated electron transport is a multicollisional, obstructed, long-range diffusion process, where factors that affect the rate of lateral diffusion also affect the rate of electron transport. Based on fluorescence recovery after photobleaching measurements, it was concluded that Q-mediated electron transport occurs by the random collision of redox components which are independent lateral diffusants, each greater than 86% mobile and diffusing in a common pool. The diffusion process of Q-mediated electron transport is 1) multicollisional since the transfers of reducing equivalents between appropriate redox partners occur with less than 100% collision efficiency; 2) obstructed since its maximal rate as well as the rates of diffusion of all redox components involved vary as a function of the membrane protein density; and 3) long-range since the diffusion of all redox components is protein density-dependent, and the diffusion distance required for Q to catalyze the transfer of a reducing equivalent from Complex II to III must be, on average, greater than 37.6 nm. These findings and other theoretical treatments reveal that measurements of short-range diffusion (less than 10 nm), in which collisions between appropriate redox partners do not occur, on average, and which are not affected by membrane protein density, are irrelevant to the collisional process of electron transport. Thus, the data show that the maximum electron transport rate is dependent on both the diffusion rate and the concentration of the redox components. Sucrose was found to inhibit both the mobility of redox components as well as their electron transport rates. Data presented on the relationships between membrane viscosity, rates of lateral and rotational diffusion, and mobile fractions of redox components do not support rotationally immobile aggregates in the functional inner membrane. The high degree of unsaturated phospholipids and the absence of cholesterol in the bilayer of the native inner membrane reflect a requirement for a low resistance to motion of the redox components to compensate for the multicollisional, obstructive nature of their catalytically important collisions in this membrane. These findings support the Random Collision Model of electron transport in which the diffusion and concentration of redox components limit the maximum rate of electron transport.  相似文献   

2.
Data are presented which indicate that the diffusion-based collisions of ubiquinone with its redox partners in the mitochondrial inner membrane are a rate-limiting step for maximum (uncoupled) rates of succinate-linked electron transport. Data were obtained from experimental analysis of a comparison of the apparent activation energies of lateral diffusion rates, collision frequencies, and electron transport rates in native and protein-diluted (phospholipid-enriched) inner membranes. Diffusion coefficients for Complex III (ubiquinol:cytochrome c oxidoreductase) and ubiquinone redox components were determined as a function of temperature using fluorescence recovery after photobleaching, and collision frequencies of appropriate redox partners were subsequently calculated. The data reveal that 1) the apparent activation energies for both diffusion and electron transport were highest in the native inner membrane and decreased with decreasing protein density, 2) the apparent activation energy for the diffusion step of ubiquinone made up the most significant portion of the activation energy for the overall kinetic activity, i.e. electron transport steps plus the diffusion steps, 3) the apparent activation energies for both diffusion and electron transport decreased in a proportionate manner as the membrane protein density was decreased, and 4) Arrhenius plots of the ratio of experimental electron transport productive collisions (turnovers) to calculated theoretically predicted, diffusion-based collisions for ubiquinone with its redox partners had little or no temperature dependence, indicating that as temperature increases, increases in electron transport rate are accounted for by the increases in diffusion-based collisions. These data support the Random Collision Model of mitochondrial electron transport in which the rates of diffusion and appropriate concentrations of redox components limit the maximum rates of electron transport in the inner membrane.  相似文献   

3.
The properties of proton solute symport have been studied inStreptococcus cremoris, Rhodopseudomonas sphaeroides andEscherichia coli. In the homolactic fermentative organismS. cremoris the efflux of lactate is a membrane proteinmediated process, which can lead to the generation of a proton motive force. These observations support the energy-recycling model that postulates the generation of metabolic energy by end-product efflux. Studies with oxidants and reductants and specific dithiol reagents inE. coli membrane vesicles demonstrated the presence of two redox-sensitive dithiol-disulphide groups in the transport proteins of proline and lactose. The redox state of these groups is controlled by the redox potential of the environment and by the proton motive force. One redox-sensitive group is located at the inner surface, the other at the outer surface of the membrane. InRps. sphaeroides andE. coli the activity of several transport proteins depends on the activity of the electron transfer systems. On the basis of these results a redox model for proton solute transport coupled in parallel to the electron transfer system is postulated.  相似文献   

4.
An electrochemical proton gradient exists across the plasma membrane and the mitochondrial membrane of the bloodstream form ofTrypanosoma brucei. The membrane potential across the plasma membrane and the regulation of the internal pH depend on the temperature.Leishmania donovani regulates its internal pH and maintains a constant electrochemical proton gradient across its plasma membrane under all conditions examined. The mitochondrion of theT. brucei bloodstream form is energized, even though the reactions taking place in it do not result in net ATP synthesis and the Kreb's cycle and the respiratory chain are absent. Glucose is transported across the plasma membrane ofT. brucei by a facilitated diffusion carrier, that can transport a wider range of substrates than its mammalian counterparts. Pyruvate exits the cell via a facilitated diffusion transporter as well. Conflicting evidence exists for the mechanism of glucose transport inL. donovani; biochemical evidence suggests proton/glucose symport, while facilitated diffusion is indicated by physiological data.  相似文献   

5.
We report the first lateral diffusion measurements of redox components in normal-sized, matrix-containing, intact mitoplasts (inner membrane-matrix particles). The diffusion measurements were obtained by submicron beam fluorescence recovery after photobleaching measurements of individual, intact, rat liver mitoplasts bathed in different osmolarity media to control the matrix density and the extent of inner membrane folding. The data reveal that neither the extent of mitochondrial matrix density nor the complexity of the inner membrane folding have a significant effect on the mobility of inner membrane redox components. Diffusion coefficients for Complex I (NADH:ubiquinone oxidoreductase), Complex III (ubiquinol: cytochrome c oxidoreductase), Complex IV (cytochrome oxidase), ubiquinone, and phospholipid were found to be effectively invariant with the matrix density and/or membrane folding and essentially the same as values we reported previously for spherical, fused, ultralarge, matrix-free, inner membranes. Diffusion of proton-transporting Complex V (ATP synthase) appeared to be 2-3-fold slower at the greatest matrix density and degree of membrane folding. Consistent with a diffusion-coupled mechanism of electron transport, comparison of electron transport frequencies (productive collisions) with the theoretical, diffusion-controlled, collision frequencies (maximum collisions possible) revealed that there were consistently more calculated than productive collisions for all redox partners. Theoretical analyses of parameters for submicron fluorescence recovery after photobleaching measurements in intact mitoplasts support the finding of highly mobile redox components diffusing at the same rates as determined in conventional fluorescence recovery after photobleaching measurements in fused, ultralarge inner membranes. These findings support the Random Collision Model of Mitochondrial Electron Transport at the level of the intact mitoplast and suggest a similar conclusion for the intact mitochondrion.  相似文献   

6.
We have determined the modes and rates of cytochrome c diffusion as well as the collision frequencies of cytochrome c with its redox partners at the surface of the isolated, mitochondrial inner membrane over a broad range (0-150 mM) of ionic strengths. Using fluorescence recovery after photobleaching, resonance energy transfer, and direct binding assay, we determined that the diffusion coefficient of cytochrome c is independent of its concentration and quantity bound to the inner membrane, that the distance of cytochrome c from the membrane surface increases with increasing ionic strength, and that there is no significant immobile fraction of cytochrome c on the membrane regardless of ionic strength. The rate of cytochrome c diffusion increases while its mode of diffusion changes progressively from lateral to three-dimensional with increasing ionic strength. At physiological ionic strength (100-150 mM), the diffusion of cytochrome c is three-dimensional with respect to the surface of the inner membrane with a coefficient of 1.0 x 10(-6) cm2/s, and little, if any cytochrome c is bound to the membrane regardless of its concentration. Furthermore, as ionic strength is raised from zero to 150 mM, the cytochrome ckd for the inner membrane increases, its mean occupancy time on the inner membrane to collide with a redox partner (tau) decreases, and its diffusion-based collision frequencies with its redox partners decrease. These data reveal the significance of both diffusion and concentration (affinity) of cytochrome c near the surface of the inner membrane in the control of the collision frequency of cytochrome c with its redox partners.  相似文献   

7.
This review examines two aspects of the structure and function of mitochondrial Complex I (NADH Coenzyme Q oxidoreductase) that have become matter of recent debate. The supramolecular organization of Complex I and its structural relation with the remainder of the respiratory chain are uncertain. Although the random diffusion model [C.R. Hackenbrock, B. Chazotte, S.S. Gupte, The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport, J. Bioenerg. Biomembranes 18 (1986) 331-368] has been widely accepted, recent evidence suggests the presence of supramolecular aggregates. In particular, evidence for a Complex I-Complex III supercomplex stems from both structural and kinetic studies. Electron transfer in the supercomplex may occur by electron channelling through bound Coenzyme Q in equilibrium with the pool in the membrane lipids. The amount and nature of the lipids modify the aggregation state and there is evidence that lipid peroxidation induces supercomplex disaggregation. Another important aspect in Complex I is its capacity to reduce oxygen with formation of superoxide anion. The site of escape of the single electron is debated and either FMN, iron-sulphur clusters, and ubisemiquinone have been suggested. The finding in our laboratory that two classes of hydrophobic inhibitors have opposite effects on superoxide production favours an iron-sulphur cluster (presumably N2) is the direct oxygen reductant. The implications in human pathology of better knowledge on these aspects of Complex I structure and function are briefly discussed.  相似文献   

8.
The role of cytochrome c diffusion in mitochondrial electron transport   总被引:3,自引:0,他引:3  
We have compared the modes and rates of cytochrome c diffusion to the rates of cytochrome c-mediated electron transport in isolated inner membranes and in whole intact mitochondria. For inner membranes, an increasing ionic strength results in an increasing rate of cytochrome c diffusion, a decreasing concentration (affinity) of cytochrome c near the membrane surface as well as near its redox partners, and an increasing rate of electron transport. For intact mitochondria, an increasing ionic strength results in a parallel, increasing rate of cytochrome c-mediated electron transport. In both inner membranes and intact mitochondria the rate of cytochrome c-mediated electron transport is highest at physiological ionic strength (100-150 mM), where the diffusion rate of cytochrome c is highest and its diffusion mode is three-dimensional. In intact mitochondria, succinate and duroquinol-driven reduction of endogenous cytochrome c is greater than 95% at all ionic strengths, indicating that cytochrome c functions as a common pool irrespective of its diffusion mode. Using a new treatment to obtain bimolecular diffusion-controlled collision frequencies in a heterogenous diffusion system, where cytochrome c diffuses laterally, pseudo-laterally, or three-dimensionally while its redox partners diffuse laterally, we determined a high degree of collision efficiency (turnover/collisions) for cytochrome c with its redox partners for all diffusion modes of cytochrome c. At physiological ionic strength, the rapid diffusion of cytochrome c in three dimensions and its low concentration (affinity) near the surface of the inner membrane mediate the highest rate of electron transport through maximum collision efficiencies. These data reveal that the diffusion rate and concentration of cytochrome c near the surface of the inner membrane are rate-limiting for maximal (uncoupled) electron transport activity, approaching diffusion control.  相似文献   

9.
Distinct fluorophores have been conjugated to antibodies for cytochrome bc1 complex and cytochrome oxidase, two integral electron transferring proteins in the mitochondrial inner membrane. Addition of these fluorescent antibodies to preparations of mitochondrial inner membranes followed by appropriate secondary antibodies causes distinct and independent aggregation of the two cytochrome proteins. These results reveal that both cytochrome bc1 complex and cytochrome oxidase diffuse laterally in the membrane plane independent of one another consistent with the random collision model for electron transport in the mitochondrial inner membrane.  相似文献   

10.
Lennon AM  Prommeenate P  Nixon PJ 《Planta》2003,218(2):254-260
The chloroplasts of many plants contain not only the photosynthetic electron transport chain, but also two enzymes, Ndh and IMMUTANS, which might participate in a chloroplast respiratory chain. IMMUTANS encodes a protein with strong similarities to the mitochondrial alternative oxidase and hence is likely to be a plastoquinol oxidase. The Ndh complex is a homologue of complex I of mitochondria and eubacteria and is considered to be a plastoquinone reductase. As yet these components have not been purified to homogeneity and their expression and orientation within the thylakoid remain ill-defined. Here we show that the IMMUTANS protein, like the Ndh complex, is a minor component of the thylakoid membrane and is localised to the stromal lamellae. Protease digestion of intact and broken thylakoids indicates that both Ndh and IMMUTANS are orientated towards the stromal phase of the membrane in Spinacia oleracea L. Such an orientation is consistent with a role for the Ndh complex in the energisation of the plastid membrane. In expression studies we show that IMMUTANS and the Ndh complex are present throughout the development of both Pisum sativum L. cv Progress No. 9 and Arabidopsis thaliana (L.) Heynh. leaves, from early expansion to early senescence. Interestingly, both the Ndh complex and the IMMUTANS protein accumulate within etiolated leaf tissue, lacking the photosystem II complex, consistent with roles outside photosynthetic electron transport.Abbreviations PQ plastoquinone - PSI, PSII photosystem I, II  相似文献   

11.
As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described. In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.  相似文献   

12.
Mitochondrial respiratory chain complexes convert chemical energy into a membrane potential by connecting electron transport with charge separation. Electron transport relies on redox cofactors that occupy strategic positions in the complexes. How these redox cofactors are assembled into the complexes is not known. Cytochrome b, a central catalytic subunit of complex III, contains two heme bs. Here, we unravel the sequence of events in the mitochondrial inner membrane by which cytochrome b is hemylated. Heme incorporation occurs in a strict sequential process that involves interactions of the newly synthesized cytochrome b with assembly factors and structural complex III subunits. These interactions are functionally connected to cofactor acquisition that triggers the progression of cytochrome b through successive assembly intermediates. Failure to hemylate cytochrome b sequesters the Cbp3–Cbp6 complex in early assembly intermediates, thereby causing a reduction in cytochrome b synthesis via a feedback loop that senses hemylation of cytochrome b.  相似文献   

13.
Many studies have reported microorganisms as efficient biocatalysts for colour removal of dye‐containing industrial wastewaters. We present the first comprehensive study to identify all molecular components involved in decolorization by bacterial cells. Mutants from the model organism Shewanella oneidensis MR‐1, generated by random transposon and targeted insertional mutagenesis, were screened for defects in decolorization of an oxazine and diazo dye. We demonstrate that decolorization is an extracellular reduction process requiring a multicomponent electron transfer pathway that consists of cytoplasmic membrane, periplasmic and outer membrane components. The presence of melanin, a redox‐active molecule excreted by S. oneidensis, was shown to enhance the dye reduction rates. Menaquinones and the cytochrome CymA are the crucial cytoplasmic membrane components of the pathway, which then branches off via a network of periplasmic cytochromes to three outer membrane cytochromes. The key proteins of this network are MtrA and OmcB in the periplasm and outer membrane respectively. A model of the complete dye reduction pathway is proposed in which the dye molecules are reduced by the outer membrane cytochromes either directly or indirectly via melanin.  相似文献   

14.
The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species.  相似文献   

15.
Aquaporin-8 (AQP8) is a membrane channel permeable to water and ammonia. As AQP8 is expressed in the inner mitochondrial membrane of several mammalian tissues, we studied the effect of the AQP8 expression on the mitochondrial transport of ammonia. Recombinant rat AQP8 was expressed in the yeast Saccharomyces cerevisiae. The presence of AQP8 in the inner membrane of yeast mitochondria was demonstrated by subcellular fractionation and immunoblotting analysis. The ammonia transport was determined in isolated mitochondria by stopped flow light scattering using formamide as ammonia analog. We found that the presence of AQP8 increased by threefold mitochondrial formamide transport. AQP8-facilitated mitochondrial formamide transport in rat native tissue was confirmed in liver (a mitochondrial AQP8-expressing tissue) vs. brain (a mitochondrial AQP8 non-expressing tissue). Comparative studies indicated that the AQP8-mediated mitochondrial movement of formamide was markedly higher than that of water. Together, our data suggest that ammonia diffusional transport is a major function for mitochondrial AQP8.  相似文献   

16.
Electron transport-coupled phosphorylation with fumarate as terminal acceptor inWolinella succinogenes yields less than 1 ATP/2 electrons. The generated by the electron transport is 0.18V and the H+/electron ratio is 1. The electron transport chain is made up of two dehydrogenases (hydrogenase and formate dehydrogenase) that catalyze the reduction of menaquinone, and fumarate reductase which catalyzes the oxidation of menaquinol.C-type cytochromes are not involved. The phosphorylative electron transport with sulfur as terminal acceptor inW. succinogenes orDesulfuromonas acetoxidans does not involve known quinones. The ATP yields should be even smaller than those with fumarate. Succinate oxidation by sulfur, which is a catabolic reaction inD. acetoxidans, is accomplished by reversed electron transport.  相似文献   

17.
Azotobacter vinelandii cells readily oxidize the dye 3,3′-diaminobenzidine (DAB), which has been previously used as an electron donor for studies on the mitochondrial cytochromec oxidase reaction. The DAB oxidase activity inA. vinelandii cells was 10-fold lower than that noted for theN,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) oxidase reaction, which is commonly used to measure terminal oxidase activity both in bacteria and mitochondria. Analyses of cell-free extracts show that DAB oxidase activity is concentrated almost exclusively in theA. vinelandii membrane fractions, most notably in the “R3” electron transport particle (ETP). Oxidation studies, which employed both whole cells and the ETP fraction, show DAB oxidase activity to be markedly sensitive to KCN, NaN3, and NH2OH. A manometric assay system was developed which readily measured DAB oxidase activity in bacteria. Preliminary studies indicate that ascorbate-DAB oxidation inAzotobacter vinelandii measures terminal cytochrome oxidase activity in a manner similar to the TMPD oxidase reaction.  相似文献   

18.
Entamoeba histolytica, an amitochondriate parasitic protist, was demonstrated to be capable of reducing the oxidized form of α-lipoic acid, a non permeable electron acceptor outside the plasma membrane. This transmembrane reduction of non permeable electron acceptors with redox potentials ranging from −290 mV to +360 mV takes place at neutral pH. The transmembrane reduction of non permeable electron acceptors was not inhibited by mitochondrial electron transport inhibitors such as antimycin A, rotenone, cyanide and azide. However, a clear inhibition with complex III inhibitor, 2-(n-heptyl)-4-hydroxyquinoline-N-oxide; modifiers of sulphydryl groups and inhibitors of glycolysis was revealed. The iron-sulphur centre inhibitor thenoyltrifluoroacetone failed to inhibit the reduction of non permeable electron acceptors whereas capsaicin, an inhibitor of energy coupling NADH oxidase, showed substantial inhibition. p-trifluromethoxychlorophenylhydrazone, a protonophore uncoupler, resulted in the stimulation of α-lipoic acid reduction but inhibition in oxygen uptake. Mitochondrial electron transport inhibitors substantially inhibited the oxygen uptake in E. histolytica. Transmembrane reduction of α-lipoic acid was strongly stimulated by anaerobiosis and anaerobic stimulation was inhibited by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide. Transmembrane redox system of E. histolytica was also found to be sensitive to UV irradiation. All these findings clearly demonstrate the existence of transplasma membrane electron transport system in E. histolytica and possible involvment of a naphthoquinone coenzyme in transmembrane redox of E. histolytica which is different from that of mammalian host and therefore can provide a novel target for future rational chemotherapeutic drug designing.  相似文献   

19.
G Lenaz 《FEBS letters》2001,509(2):151-155
The function of the coenzyme Q (CoQ) pool in the inner mitochondrial membrane is reviewed in view of recent findings suggesting a supramolecular organization of the mitochondrial respiratory complexes. In spite of the structural evidence for preferential aggregations of the inner membrane components, most kinetic evidence is in favor of a dispersed organization based on random collisions of the small connecting redox components, in particular CoQ, with the individual complexes. The shape of the CoQ molecule in the pool, suggested to be a folded one, is in agreement with its very rapid lateral diffusion mobility in the membrane midplane. Since the structural evidence in favor of specific supercomplexes is rather strong, it cannot be excluded that electron transfer may follow either pool behavior or preferential channeling depending on the physiological conditions. Another function ascribed to the CoQ pool is the antioxidant action of the reduced CoQ molecules; although it cannot be excluded that protein-bound ubisemiquinones may be a source of oxygen radicals, particularly at the level of complex III, the available evidence suggests that the mitochondrial pool only behaves as an antioxidant under physiological conditions.  相似文献   

20.
Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox‐balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in Escherichia coli, MSL1 forms a stretch‐activated ion channel with a slight preference for anions and provides protection against hypo‐osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo‐osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1‐1 mutants under moderate heat‐ and heavy‐metal‐stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing, but is complementary and appears to be important under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号