首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低氧环境和运动训练均可导致人体体重降低,然而,低氧结合中强度训练对肥胖人群能量代谢及氧化应激的影响尚不清楚。本研究招募了60名无系统运动训练史的健康男性大学生,将受试者分为低氧组和常氧组,每组30名。在一个110 m^2的训练室内通过低氧训练系统模拟人工低氧环境(海拔高度:2 500 m,氧浓度:15%)。两组受试者进行1个月的低氧/常氧中强度骑行训练。此外,对低氧和常氧中强度训练的大鼠进行力竭跑台运动测试,苏木精和伊红(HE)染色评价大鼠骨骼肌形态学变化,RT-PCR检测低氧诱导因子1α(HIF-1α) mRNA的表达。研究显示,运动后低氧组的体重、脂肪重量和BMI均显著低于常氧组(p<0.05)。运动后低氧组的血清TC、HDL-C和LDL-C含量均显著低于常氧组(p<0.05),而总TG含量与常氧组无显著差异(p>0.05)。运动后,低氧组的游离脂肪酸含量显著高于常氧组(p<0.05),两组血糖无显著差异(p>0.05)。运动后,低氧组的SOD和GSH-PX水平显著高于常氧组(p<0.05),而MDA水平显著低于常氧组(p<0.05)。运动后,低氧组的IL-1β、IL-6和TNF-α水平显著低于常氧组(p<0.05)。力竭运动后,低氧组大鼠的骨骼肌形态学改变异常情况明显低于常氧组。低氧组的HIF-1αm RNA水平显著高于常氧组。本研究表明,与常氧相比,低氧中强度训练可有效降低肥胖人群的血脂水平,促进脂肪动员,减弱氧化应激损伤,抑制促炎细胞因子表达,从而促进体重减轻,并防止糖尿病、高血脂等肥胖相关疾病的发生。此外,低氧中强度可通过上调HIF-1α来提高机体抗氧化能力并减弱运动损伤。  相似文献   

2.
BACKGROUND: The purpose of this study was to determine the effects of hypoxic training on the cardiorespiratory system and skeletal muscle among well-trained endurance athletes in a randomized cross-over design. METHODS: Eight junior national level competitive cyclists were separated into two groups; Group A trained under normoxic condition (21% O2) for 2 hours/day, 3 days/week for 3 weeks while Group B used the same training protocol under hypoxic condition (15% O2). After 3 weeks of each initial training condition, five weeks of self-training under usual field conditions intervened before the training condition was switched from NT to HT in Group A, from HT to NT in Group B. The subjects were tested at sea level before and after each training period. O2 uptake (O2), blood samples, and muscle deoxygenation were measured during bicycle exercise test. RESULTS AND DISCUSSION: No changes in maximal workload, arterial O2 content, O2 at lactate threshold and O2max were observed before or after each training period. In contrast, deoxygenation change during submaximal exercise in the vastus lateralis was significantly higher at HT than NT (p < 0.01). In addition, half time of oxygenation recovery was significantly faster after HT (13.2 PlusMinus; 2.6 sec) than NT (18.8 PlusMinus; 2.7 sec) (p < 0.001). CONCLUSIONS: Three weeks of HT may not give an additional performance benefit at sea level for elite competitive cyclists, even though HT may induce some physiological adaptations on muscle tissue level.  相似文献   

3.
This study aimed to determine the changes in soleus myofibrillar ATPase (m-ATPase) activity and myosin heavy chain (MHC) isoform expression after endurance training and/or chronic hypoxic exposure. Dark Agouti rats were randomly divided into four groups: control, normoxic sedentary (N; n = 14), normoxic endurance trained (NT; n = 14), hypoxic sedentary (H; n = 10), and hypoxic endurance trained (HT; n = 14). Rats lived and trained in normoxia at 760 mmHg (N and NT) or hypobaric hypoxia at 550 mmHg (approximately 2,800 m) (H and HT). m-ATPase activity was measured by rapid flow quench technique; myosin subunits were analyzed with mono- and two-dimensional gel electrophoresis. Endurance training significantly increased m-ATPase (P < 0.01), although an increase in MHC-I content occurred (P < 0.01). In spite of slow-to-fast transitions in MHC isoform distribution in chronic hypoxia (P < 0.05) no increase in m-ATPase was observed. The rate constants of m-ATPase were 0.0350 +/- 0.0023 s(-1) and 0.047 +/- 0.0050 s(-1) for N and NT and 0.033 +/- 0.0021 s(-1) and 0.038 +/- 0.0032 s(-1) for H and HT. Thus, dissociation between variations in m-ATPase and changes in MHC isoform expression was observed. Changes in fraction of active myosin heads, in myosin light chain isoform (MLC) distribution or in MLC phosphorylation, could not explain the variations in m-ATPase. Myosin posttranslational modifications or changes in other myofibrillar proteins may therefore be responsible for the observed variations in m-ATPase activity.  相似文献   

4.
Our laboratory has previously shown an attenuation of hypoxic pulmonary hypertension by exercise training (ET) (Henderson KK, Clancy RL, and Gonzalez NC. J Appl Physiol 90: 2057-2062, 2001), although the mechanism was not determined. The present study examined the effect of ET on the pulmonary arterial pressure (Pap) response of rats to short- and long-term hypoxia. After 3 wk of treadmill training, male rats were divided into two groups: one (HT) was placed in hypobaric hypoxia (380 Torr); the second remained in normoxia (NT). Both groups continued to train in normoxia for 10 days, after which they were studied at rest and during hypoxic and normoxic exercise. Sedentary normoxic (NS) and hypoxic (HS) littermates were exposed to the same environments as their trained counterparts. Resting and exercise hypoxic arterial P(O2) were higher in NT and HT than in NS and HS, respectively, although alveolar ventilation of trained rats was not higher. Lower alveolar-arterial P(O2) difference and higher effective lung diffusing capacity for O2 in NT vs. NS and in HT vs. HS suggest ET improved efficacy of gas exchange. Pap and Pap/cardiac output were lower in NT than NS in hypoxia, indicating that ET attenuates the initial vasoconstriction of hypoxia. However, ET had no effect on chronic hypoxic pulmonary hypertension: Pap and Pap/cardiac output in hypoxia were similar in HS vs HT. However, right ventricular weight was lower in HT than in HS, although Pap was not different. Because ET attenuates the initial pulmonary vasoconstriction of hypoxia, development of pulmonary hypertension may be delayed in HT rats, and the time during which right ventricular afterload is elevated may be shorter in this group. ET effects may improve the response to acute hypoxia by increasing efficacy of gas exchange and lowering right ventricular work.  相似文献   

5.
为探究低氧-复氧胁迫对鲢(Hypophthalmichthys molitrix)抗氧化酶活性及Cu/Zn-SOD和Mn-SOD基因表达的影响, 对鲢进行急性低氧、持续低氧及复氧实验, 进而分析血清、心脏和肝脏中不同抗氧化酶和SODs基因表达的变化特征。结果表明: 在急性低氧胁迫后, 血清中总抗氧化能力(T-AOC)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活性随着氧浓度的降低均呈上升趋势, 但超氧化物歧化酶(SOD)活性呈先升后降的趋势。在持续低氧胁迫后, 血清中T-AOC和GSH-PX活性随着低氧胁迫时间的增加显著升高(P<0.05); 心脏中SOD活性显著高于常氧水平(P<0.05), 但Cu/Zn-SOD和Mn-SOD基因表达在低氧胁迫24h时显著低于常氧水平(P<0.05); 肝脏中SOD活性在低氧胁迫24h时显著高于常氧水平(P<0.05), 且Cu/Zn-SOD和Mn-SOD基因表达在低氧胁迫24h时也显著高于常氧水平(P<0.05)。复氧后, 血清、心脏和肝脏中T-AOC、SOD、CAT和GSH-PX活性均能恢复至常氧水平, 且心脏和肝脏中Cu/Zn-SOD和Mn-SOD基因表达的也能恢复至常氧水平, 但肝脏中Mn-SOD基因表达恢复至常氧水平较在心脏中所需时间更少。因而, 鲢可以通过调节抗氧化酶的活性来保护自身免受氧化应激造成的损伤。研究为解析低氧胁迫下鲢抗氧化应激机制提供了基础。  相似文献   

6.
In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10μM SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen.  相似文献   

7.
Liver nucleotides (ATP, ADP, AMP, IMP), the adenylate energy charge (AEC), total adenylate concentration (TA), and IMP-load were used as measures of stress in rainbow trout (Oncorhynchus mykiss) acclimated to normoxic (10.0 mg/l), hypoxic (6.5 mg/l), and supersaturated (13.0 mg/l) dissolved oxygen concentrations and subjected to a challenge by confinement. Liver ATP (783.0 nmol/g) was significantly different in the normoxic fish compared to either hyperoxic (447.7 nmol/g) or hypoxic (402.0 nmol/g) fish at the end of the confinement. Within 6.0 hr in the confinement, liver AEC in the normoxic fish increased significantly (0.58) compared to hypoxic (0.42) and hyperoxic fish (0.42). Similarly, the IMP-load in normoxic fish (0.16) decreased to near prestress levels by 6.0 hr in confinement compared to either the hypoxic (0.31) or hyperoxic (0.30) fish. Nucleotides in liver were significantly affected by the dissolved oxygen treatments and the confinement stress in contrast to the muscle nucleotides which were not.  相似文献   

8.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

9.
The effects of 24-epibrassinolide (EBR) added to nutrient solution on growth of cucumber (Cucumis sativus L.) under root-zone hypoxia were investigated. Cucumber seedlings were hydroponically grown for 8 days in normoxic and hypoxic nutrient solutions with and without addition of EBR at 1 μg l−1. EBR exerted little influence on plant performance in the normoxic nutrient solution, while the chemical alleviated root-zone hypoxia-induced inhibition of root and shoot growth and net photosynthetic rate (Pn). EBR added to hypoxic nutrient solution caused an increase in the concentration of fructose, sucrose, and total soluble sugars in the roots but not in the leaves. Root-zone hypoxia enhanced the activities of lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), and pyruvate decarboxylase in the roots. Interestingly, EBR further enhanced ADH activity but lowered LDH activity in hypoxic roots. These results suggest that EBR added to hypoxic nutrient solution may stimulate the photosynthate allocation down to roots and the shift from lactate fermentation to alcohol fermentation in hypoxic roots, resulting in the increase in ATP production through glycolysis and the avoidance of cytosolic acidosis and eventually enhanced tolerance of cucumber plants to root-zone hypoxia.  相似文献   

10.
Arterial acid-base balance, lactate, pyruvate, lactate dehydrogenase activity (LDH), 2,3-diphosphoglycerate content (2,3-DPG) of normoxic control rats were compared with those of rats exposed to a hypoxic normobaric environment (10% O2 in N2) within a few hours after birth (hypoxic animals of first generation or H1), and with those of rats of second generation (H2) conceived and born in the above mentioned hypoxic environment of H1 parents and maintained always in the same place since their utilization. The H1 rats showed a displacement of acid-base balance towards acidosis and an increase of lactate, pyruvate, LDH and 2,3-DPG in comparison with normoxic controls. The H2 rats showed a significant attenuation of acidosis in comparison with H1 rats; the values of lactate, pyruvate, LDH and 2,3-DPG were intermediate between those found in H1 and normoxic control rats. We believe that these results are in relation with the evolution of adaptative processes to hypoxic environment in hypoxic animals of second generation.  相似文献   

11.
The effects of concurrent hypoxic/endurance training on mitochondrial respiration in permeabilized fibers in trained athletes were investigated. Eighteen endurance athletes were divided into two training groups: normoxic (Nor, n = 8) and hypoxic (H, n = 10). Three weeks (W1-W3) of endurance training (5 sessions of 1 h to 1 h and 30 min per week) were completed. All training sessions were performed under normoxic [160 Torr inspired Po(2) (Pi(O(2)))] or hypoxic conditions ( approximately 100 Torr Pi(O(2)), approximately 3,000 m) for Nor and H group, respectively, at the same relative intensity. Before and after the training period, an incremental test to exhaustion in normoxia was performed, muscle biopsy samples were taken from the vastus lateralis, and mitochondrial respiration in permeabilized fibers was measured. Peak power output (PPO) increased by 7.2% and 6.6% (P < 0.05) for Nor and H, respectively, whereas maximal O(2) uptake (Vo(2 max)) remained unchanged: 58.1 +/- 0.8 vs. 61.0 +/- 1.2 ml.kg(-1).min(-1) and 58.5 +/- 0.7 vs. 58.3 +/- 0.6 ml.kg(-1).min(-1) for Nor and H, respectively, between pretraining (W0) and posttraining (W4). Maximal ADP-stimulated mitochondrial respiration significantly increased for glutamate + malate (6.27 +/- 0.37 vs. 8.51 +/- 0.33 mumol O(2).min(-1).g dry weight(-1)) and significantly decreased for palmitate + malate (3.88 +/- 0.23 vs. 2.77 +/- 0.08 mumol O(2).min(-1).g dry weight(-1)) in the H group. In contrast, no significant differences were found for the Nor group. The findings demonstrate that 1) a 3-wk training period increased the PPO at sea level without any changes in Vo(2 max), and 2) a 3-wk hypoxic exercise training seems to alter the intrinsic properties of mitochondrial function, i.e., substrate preference.  相似文献   

12.
Chronic hypoxia protects the heart against injury caused by acute oxygen deprivation, but its salutary mechanism is poorly understood. The aim was to find out whether cardiomyocytes isolated from chronically hypoxic hearts retain the improved resistance to injury and whether the mitochondrial large-conductance Ca2+-activated K+ (BKCa) channels contribute to the protective effect. Adult male rats were adapted to continuous normobaric hypoxia (inspired O2 fraction 0.10) for 3 wk or kept at room air (normoxic controls). Myocytes, isolated separately from the left ventricle (LVM), septum (SEPM), and right ventricle, were exposed to 25-min metabolic inhibition with sodium cyanide, followed by 30-min reenergization (MI/R). Some LVM were treated with either 30 μM NS-1619 (BKCa opener), or 2 μM paxilline (BKCa blocker), starting 25 min before metabolic inhibition. Cell injury was detected by Trypan blue exclusion and lactate dehydrogenase (LDH) release. Chronic hypoxia doubled the number of rod-shaped LVM and SEPM surviving the MI/R insult and reduced LDH release. While NS-1619 protected cells from normoxic rats, it had no additive salutary effect in the hypoxic group. Paxilline attenuated the improved resistance of cells from hypoxic animals without affecting normoxic controls; it also abolished the protective effect of NS-1619 on LDH release in the normoxic group. While chronic hypoxia did not affect protein abundance of the BKCa channel regulatory β1-subunit, it markedly decreased its glycosylation level. It is concluded that ventricular myocytes isolated from chronically hypoxic rats retain the improved resistance against injury caused by MI/R. Activation of the mitochondrial BKCa channel likely contributes to this protective effect.  相似文献   

13.
This study examined the effects of intermittent hypoxic training (IHT) on skeletal muscle monocarboxylate lactate transporter (MCT) expression and anaerobic performance in trained athletes. Cyclists were assigned to two interventions, either normoxic (N; n = 8; 150 mmHg PIO2) or hypoxic (H; n = 10; ∼3000 m, 100 mmHg PIO2) over a three week training (5×1 h-1h30.week−1) period. Prior to and after training, an incremental exercise test to exhaustion (EXT) was performed in normoxia together with a 2 min time trial (TT). Biopsy samples from the vastus lateralis were analyzed for MCT1 and MCT4 using immuno-blotting techniques. The peak power output (PPO) increased (p<0.05) after training (7.2% and 6.6% for N and H, respectively), but VO2max showed no significant change. The average power output in the TT improved significantly (7.3% and 6.4% for N and H, respectively). No differences were found in MCT1 and MCT4 protein content, before and after the training in either the N or H group. These results indicate there are no additional benefits of IHT when compared to similar normoxic training. Hence, the addition of the hypoxic stimulus on anaerobic performance or MCT expression after a three-week training period is ineffective.  相似文献   

14.
Li J  Zhang YB 《生理学报》2011,63(1):55-61
本研究旨在观察4种低氧训练模式对大鼠骨骼肌线粒体抗氧化能力及呼吸链酶复合体活性的影响。将雄性Wistar大鼠40只随机均分为5组(n=8):常氧训练组(LoLo)、高住高练组(HiHi)、高住低训组(HiLo)、低住高练组(LoHi)和高住高练低训组(HiHiLo)。各组大鼠分别在常氧(海拔1500m,大气压632mmHg)或/和低氧(模拟海拔3500m,大气压493mmHg)环境中居住及递增负荷训练5周,每周训练6天。各组大鼠在最后一次训练后,在常氧环境恢复3天,然后进行力竭运动,之后即刻取骨骼肌样本,用差速离心法提取骨骼肌线粒体,分光光度法测定丙二醛(malondialdehyde,MDA)含量及超氧化物歧化酶(su-peroxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)和过氧化氢酶(catalase,CAT)活性及呼吸链酶复合体Ⅰ~Ⅲ(CⅠ~Ⅲ)活性。结果显示,与LoLo组相比,HiHi和HiHiLo组骨骼肌组织MDA含量均显著升高(P<0.01),SOD、GSH-Px和CAT活性均显著升高(P<0.05或P<0.01)。与LoL...  相似文献   

15.
ObjectiveThis study aims to investigate the effects of TRPV4 on acute hypoxic exercise-induced central fatigue, in order to explore the mechanism in central for exercise capacity decline of athletes in the early stage of altitude training.Methods120 male Wistar rats were randomly divided into 12 groups: 4 normoxia groups (quiet group, 5-level group, 8-level group, exhausted group), 4 groups at simulated 2500 m altitude (grouping as before), 4 groups at simulated 4500 m altitude (grouping as before), 10 in each group. With incremental load movement, materials were drawn corresponding to the load. Intracellular calcium ion concentration was measured by HE staining, enzyme-linked immunosorbent assay, immunohistochemistry, RT-qPCR, Fluo-4/AM and Fura-2/AM fluorescence staining.Results(1) Hypoxic 2–5 groups showed obvious venous congestion, with symptoms similar to normoxia-8 group; Hypoxic 2–8 groups showed meningeal loosening edema, infra-meningeal venous congestion, with symptoms similar to normoxia-exhausted group and hypoxic 1-exhaused group. (2) For 5,6-EET, regardless of normoxic or hypoxic environment, significant or very significant differences existed between each exercise load group (normoxic ? 5 level 20.58 ± 0.66 pg/mL, normoxic ? 8 level 23.15 ± 0.46 pg/mL, normoxic - exhausted 26.66 ± 0.71 pg/mL; hypoxic1-5 level 21.72 ± 0.43 pg/mL, hypoxic1-8 level 24.73 ± 0.69 pg/mL, hypoxic 1-exhausted 28.68 ± 0.48 pg/mL; hypoxic2-5 level 22.75 ± 0.20 pg/mL, hypoxic2-8 level 25.62 ± 0.39 pg/mL, hypoxic 2-exhausted 31.03 ± 0.41 pg/mL) and quiet group in the same environment(normoxic-quiet 18.12 ± 0.65 pg/mL, hypoxic 1-quiet 19.94 ± 0.43 pg/mL, hypoxic 2-quiet 21.72 ± 0.50 pg/mL). The 5,6-EET level was significantly or extremely significantly increased in hypoxic 1 environment and hypoxic 2 environment compared with normoxic environment under the same load. (3) With the increase of exercise load, expression of TRPV4 in the rat prefrontal cortex was significantly increased; hypoxic exercise groups showed significantly higher TRPV4 expression than the normoxic group. (4) Calcium ion concentration results showed that in the three environments, 8 level group (normoxic-8 190.93 ± 6.11 nmol/L, hypoxic1-8 208.92 ± 6.20 nmol/L, hypoxic2-8 219.13 ± 4.57 nmol/L) showed very significant higher concentration compared to quiet state in the same environment (normoxic-quiet 107.11 ± 0.49 nmol/L, hypoxic 1-quiet 128.48 ± 1.51 nmol/L, hypoxic 2-quiet 171.71 ± 0.84 nmol/L), and the exhausted group in the same environment (normoxic-exhausted 172.51 ± 3.30 nmol/L, hypoxic 1-exhausted 164.54 ± 6.01 nmol/L, hypoxic 2-exhausted 154.52 ± 1.80 nmol/L) had significant lower concentration than 8-level group; hypoxic2-8 had significant higher concentration than normoxic-8.ConclusionAcute hypoxic exercise increases the expression of TRPV4 channel in the prefrontal cortex of the brain. For a lower ambient oxygen concentration, expression of TRPV4 channel is higher, suggesting that TRPV4 channel may be one important mechanism involved in calcium overload in acute hypoxic exercise.  相似文献   

16.
To examine the effect of ambient temperature on metabolism during fatiguing submaximal exercise, eight men cycled to exhaustion at a workload requiring 70% peak pulmonary oxygen uptake on three separate occasions, at least 1 wk apart. These trials were conducted in ambient temperatures of 3 degrees C (CT), 20 degrees C (NT), and 40 degrees C (HT). Although no differences in muscle or rectal temperature were observed before exercise, both muscle and rectal temperature were higher (P < 0.05) at fatigue in HT compared with CT and NT. Exercise time was longer in CT compared with NT, which, in turn, was longer compared with HT (85 +/- 8 vs. 60 +/- 11 vs. 30 +/- 3 min, respectively; P < 0.05). Plasma epinephrine concentration was not different at rest or at the point of fatigue when the three trials were compared, but concentrations of this hormone were higher (P < 0.05) when HT was compared with NT, which in turn was higher (P < 0.05) compared with CT after 20 min of exercise. Muscle glycogen concentration was not different at rest when the three trials were compared but was higher at fatigue in HT compared with NT and CT, which were not different (299 +/- 33 vs. 153 +/- 27 and 116 +/- 28 mmol/kg dry wt, respectively; P < 0.01). Intramuscular lactate concentration was not different at rest when the three trials were compared but was higher (P < 0.05) at fatigue in HT compared with CT. No differences in the concentration of the total intramuscular adenine nucleotide pool (ATP + ADP + AMP), phosphocreatine, or creatine were observed before or after exercise when the trials were compared. Although intramuscular IMP concentrations were not statistically different before or after exercise when the three trials were compared, there was an exercise-induced increase (P < 0.01) in IMP. These results demonstrate that fatigue during prolonged exercise in hot conditions is not related to carbohydrate availability. Furthermore, the increased endurance in CT compared with NT is probably due to a reduced glycogenolytic rate.  相似文献   

17.
We investigated whether 8-week treadmill training strengthens antioxidant enzymes and decreases lipid peroxidation in rat heart. The effects of acute exhaustive exercise were also investigated. Male rats (Rattus norvegicus, Sprague-Dawley strain) were divided into trained and untrained groups. Both groups were further divided equally into two groups where the rats were studied at rest and immediately after exhaustive exercise. Endurance training consisted of treadmill running 1.5 h day(-1), 5 days week(-1) for 8 weeks. For acute exhaustive exercise, graded treadmill running was conducted. Malondialdehyde level in heart tissue was not affected by acute exhaustive exercise in untrained and trained rats. The activities of glutathione peroxidase and glutathione reductase enzymes decreased by both acute exercise and training. Glutathione S-transferase and catalase activities were not affected. Total and non-enzymatic superoxide scavenger activities were not affected either. Superoxide dismutase activity decreased by acute exercise in untrained rats; however, this decrease was not observed in trained rats. Our results suggested that rat heart has sufficient antioxidant enzyme capacity to cope with exercise-induced oxidative stress, and adaptive changes in antioxidant enzymes due to endurance training are limited.  相似文献   

18.
The influence of endurance training on functional capacity [maximal O2 consumption (VO2 max)], caudal arterial blood pressure, and myocardial capillary density were investigated in normotensive rats and rats made hypertensive using the two-kidney one-clip approach (Goldblatt's hypertension). Male Sprague-Dawley rats were assigned to sham (N: 120-140 mmHg), moderately hypertensive (MH = 0.30-mm clips, 150-170 mmHg), or severely hypertensive (SH = 0.25-mm clips, 190-230 mmHg) groups. Rats designated to be runners (T) were exercised on a motor-driven treadmill equal to 50-70% of their VO2 max values for 8-12 wk. Compared with their nontrained (NT) controls, training was associated with significantly higher VO2 max values (12-15%) and muscle cytochrome-c oxidase activities (33-78%). Resting systolic blood pressure was not significantly changed in the N-and MH-T subgroups; however, it was 20-30 mmHg higher in the SH-T subgroup. Mean absolute heart weight for only the N-T group was significantly heavier than their NT controls. However, the mean predicted heart weights (heart wt = 0.639 X body wt of N-NT + 0.001 g) of the two SH groups were significantly higher than expected. The SH-T group had a lower (11%) subepicardial capillary density mean than its NT control and significantly fewer capillaries in the subendocardial region than the other five subgroups. It was concluded that moderate exercise training appeared to be detrimental to rats with severe hypertension because it increased resting blood pressure and decreased myocardial capillary density, even though it improved their functioning capacity.  相似文献   

19.
The immature brain is more resistant to hypoxia/ischemia than the mature brain. Although chronic hypoxia can induce adaptive-changes on the developing brain, the mechanisms underlying such adaptive changes are poorly understood. To further elucidate some of the adaptive changes during postnatal hypoxia, we determined the activities of four enzymes of glucose oxidative metabolism in eight brain regions of hypoxic and normoxic rats. Litters of Sprague-Dawley rats were put into the hypoxic chamber (oxygen level maintained at 9.5%) with their dams starting on day 3 postnatal (P3). Age-matched normoxic rats were use as control animals. In P10 hypoxic rats, lactate dehydrogenase (LDH) activity in cerebral cortex, striatum, olfactory bulb, hippocampus, hypothalamus, pons and medulla, and cerebellum was significantly increased (by 100%–370%) compared to those in P10 normoxic rats. In P10 hypoxic rats, hexokinase (HK) activity in hypothalamus, hippocampus, olfactory bulb, midbrain, and cerebral cortex was significantly decreased (by 15%–30%). Neither -ketoglutarate dehydrogenase complex (KGDHC, which is believed to have an important role in the regulation of the tricarboxylic acid [TCA] cycle flux) nor citrate synthase (CS) activity was significantly decreased in the eight regions of P10 hypoxic rats compared to those in P10 normoxic rats. In P30 hypoxic rats, LDH activity was only increased in striatum (by 19%), whereas HK activity was only significantly decreased (by 30%) in this region. However, KGDHC activity was significantly decreased in olfactory bulb, hippocampus, hypothalamus, cerebral cortex, and cerebellum (by 20%–40%) in P30 hypoxic rats compared to those in P30 normoxic rats. Similarly, CS activity was decreased, but only in olfactory bulb, hypothalamus, and midbrain (by 9%–21%) in P30 hypoxic rats. Our results suggest that at least some of the mechanisms underlying the hypoxia-induced changes in activities of glycolytic enzymes implicate the upregulation of HIF-1. Moreover, our observation that chronic postnatal hypoxia induces differential effects on brain glycolytic and TCA cycle enzymes may have pathophysiological implications (e.g., decreased in energy metabolism) in childhood diseases (e.g., sudden infant death syndrome) in which hypoxia plays a role.  相似文献   

20.
In this study, we explored how environmental oxygen levels affect the metabolic phenotype of sympatric sunfish known to differ in their hypoxia tolerance. We examined bluegill (Lepomis macrochirus) and pumpkinseed (Lepomis gibbosus), two species commonly found in the same water bodies, though pumpkinseed are considered more hypoxia tolerant, and survive in hypoxic lakes that exclude bluegill. Freshly caught Lake Opinicon pumpkinseed possessed significantly higher glycolytic enzyme activities (PGI, ALD, GAPDH, ENO, and LDH) than bluegill, but after holding the fish in an oxygenated environment for 7days, pumpkinseed glycolytic enzymes (PGI, ALD, and LDH) and mRNA (LDHA and HIF1α) declined to bluegill's levels. When glycolytic enzymes and mRNA were compared in pumpkinseed populations from seven lakes, only Penyck Lake pumpkinseed had significantly elevated glycolytic enzyme activity that did not diminish with normoxic holding. The levels of mRNA for LDHA and HIF1α did not differ between lakes and did not change in response to normoxic holding in the Penyck Lake fish. Collectively, these studies on sunfish show that hypoxia tolerance contributes to ecological niche specialization between species, and provides an example of a population that has adapted chronically elevated glycolytic enzyme activity independent of current dissolved oxygen in the water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号