首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Herein we report the identification of amino acids of the Sulfolobus solfataricus mini-chromosome maintenance (MCM)-like DNA helicase (SsoMCM), which are critical for DNA binding/remodeling. The crystallographic structure of the N-terminal portion (residues 2-286) of the Methanothermobacter thermoautotrophicum MCM protein revealed a dodecameric assembly with two hexameric rings in a head-to-head configuration and a positively charged central channel proposed to encircle DNA molecules. A structure-guided alignment of the M. thermoautotrophicum and S. solfataricus MCM sequences identified positively charged amino acids in SsoMCM that could point to the center of the channel. These residues (Lys-129, Lys-134, His-146, and Lys-194) were changed to alanine. The purified mutant proteins were all found to form homo-hexamers in solution and to retain full ATPase activity. K129A, H146A, and K194A SsoMCMs are unable to bind DNA either in single- or double-stranded form in band shift assays and do not display helicase activity. In contrast, the substitution of lysine 134 to alanine affects only binding to duplex DNA molecules, whereas it has no effect on binding to single-stranded DNA and on the DNA unwinding activity. These results have important implications for the understanding of the molecular mechanism of the MCM DNA helicase action.  相似文献   

4.
Allergic diseases, including asthma, represent a major threat to human health. Over the three last decades, their incidence has risen in western countries. Aspirin treatment has been shown to improve allergic diseases, especially asthma, and the decreased use of aspirin has been hypothesized to contribute to the increase in childhood asthma. Because salicylate compounds suppress a number of enzymatic activities, and signaling through IL-4R participates in the development of allergic responses, we tested the effect of salicylates on IL-4 signal transduction. We found that treatment of cell lines and primary cells with aspirin and salicylates, but not acetaminophen, inhibited the activation of STAT6 by IL-4 and IL-13. This effect correlated with the inhibition of IL-4-induced CD23 expression. Although salicylates inhibited the in vivo activation of Janus kinases, their kinase activity was not affected in vitro by salicylates, suggesting that other kinases were involved in IL-4-induced STAT6 activation. Furthermore, we found that an Src kinase was involved in STAT6 activation because 1) Src kinase activity was induced by IL-4, 2) Src kinase activity, but not Janus kinase, was inhibited by salicylates in vitro, 3) cells expressing viral Src had constitutive STAT6 phosphorylation, and 4) cells lacking Src showed low STAT6 phosphorylation in response to IL-4. Because STAT6 activation by IL-4 and IL-13 participates in the development of allergic diseases, our results provide a mechanism to explain the beneficial effects of aspirin and salicylate treatment of these diseases.  相似文献   

5.
The etoposide-induced protein Ei24 was initially identified as a p53-responsive, proapoptotic factor, but no clear function has been described. Here, we use a nonbiased proteomics approach to identify members of the importin (IMP) family of nuclear transporters as interactors of Ei24 and characterize an IMPβ-binding-like (IBBL) domain within Ei24. We show that Ei24 can bind specifically to IMPβ1 and IMPα2, but not other IMPs, and use a mutated IMPβ1 derivative to show that Ei24 binds to the same site on IMPβ1 as the IMPα IBB. Ectopic expression of Ei24 reduced the extent of IMPβ1- or IMPα/β1-dependent nuclear protein import specifically, whereas specific alanine substitutions within the IBBL abrogated this activity. Induction of endogenous Ei24 expression through etoposide treatment similarly inhibited nuclear import in a mouse embryonic fibroblast model. Thus, Ei24 can bind specifically to IMPβ1 and IMPα2 to impede their normal role in nuclear import, shedding new light on the cellular functions of Ei24 and its tumor suppressor role.  相似文献   

6.
A GTPase distinct from Ran is involved in nuclear protein import   总被引:7,自引:0,他引:7       下载免费PDF全文
Signal-dependent transport of proteins into the nucleus is a multi-step process mediated by nuclear pore complexes and cytosolic transport factors. One of the cytosolic factors, Ran, is the only GTPase that has a characterized role in the nuclear import pathway. We have used a mutant form of Ran with altered nucleotide binding specificity to investigate whether any other GTPases are involved in nuclear protein import. D125N Ran (XTP-Ran) binds specifically to xanthosine triphosphate (XTP) and has a greatly reduced affinity for GTP, so it is no longer sensitive to inhibition by nonhydrolyzable analogues of GTP such as guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). using in vitro transport assays, we have found that nuclear import supported by XTP-Ran is nevertheless inhibited by the addition of non-hydrolyzable GTP analogues. This in conjunction with the properties of the inhibitory effect indicates that at least one additional GTPase is involved in the import process. Initial characterization suggests that the inhibited GTPase plays a direct role in protein import and could be a component of the nuclear pore complex.  相似文献   

7.
8.
9.
Macrophages release IFN-gamma on combined stimulation with IL-12 and IL-18, but the signaling requirements of this process and its regulation by other cytokines are unknown. Here, we demonstrate that STAT4 is indispensable for IL-12/IL-18-induced production of IFN-gamma by mouse peritoneal macrophages. Type 2 NO synthase (NOS2), which we previously found to be a prerequisite for IL-12-induced IFN-gamma production in NK cells, was not required for IFN-gamma production by these macrophages. IL-12 alone already induced the expression of IFN-gamma mRNA, but nuclear translocation of STAT4, the release of IFN-gamma protein, and the subsequent production of NO was strictly dependent on the simultaneous presence of IL-18. NF-kappa B, which mediates IL-18 effects in T cells, was only weakly activated by IL-12 and/or IL-18 in macrophages. Known inhibitors of macrophage functions (e.g., IL-4 and TGF-beta) also suppressed macrophage IFN-gamma production and the subsequent production of NOS2-derived NO. The inhibitory effect of IL-4 was paralleled by nuclear translocation of STAT6, which in EMSAs was able to bind to the same DNA oligonucleotide as STAT4. These results further define the production of IFN-gamma by macrophages and point to a diversity in the signals required for IFN-gamma production by various cell types.  相似文献   

10.
We examined the immunological abnormality in a patient with recurrent Mycobacterium avium infection. T cells from the patient showed decreased ability both to produce IFN-gamma and to proliferate in response to IL-12. Despite decreased expression of IL-12R beta1 and beta2 chains in the patient's PHA-activated T cells, there was no difference in IL-12-induced tyrosine and serine phosphorylation of STAT4 in PHA-activated T cells between the patient and healthy subjects, suggesting that IL-12R signals are transmitted to STAT4 in the patient's PHA-activated T cells. Using EMSA, confocal laser microscopy, and Western blotting, we demonstrated that the nuclear translocation of STAT4 in response to IL-12 is reduced in PHA-activated T cells from the patient when compared with those from healthy subjects. Leptomycin B was used to examine whether nuclear export of STAT4 is increased in the patient's T cells. However, leptomycin B treatment did not reverse impaired IL-12-induced nuclear accumulation of STAT4. Although the exact mechanism responsible for the impaired STAT4 nuclear translocation in this patient remains unclear, the absence of mutation in the IL-12Rbeta1, IL-12Rbeta2, STAT4, and STAT4-binding sequence of the IFN-gamma gene and preservation of STAT4 tyrosine and serine phosphorylation suggest the existence of a defective STAT4 nuclear translocation. This defect is likely responsible for the impaired STAT4 nuclear translocation in IL-12-stimulated T cells, leading to impairment of both IFN-gamma production and cell proliferation. To the best of our knowledge, this is the first report of a patient with atypical mycobacterial infection associated with impairment of STAT4 nuclear translocation.  相似文献   

11.
Li L  Lu AL 《Nucleic acids research》2003,31(12):3038-3049
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxo-guanine (8-oxoG). The C-terminal domain of MutY is required for 8-oxoG recognition and is critical for mutation avoidance of oxidative damage. To determine which residues of this domain are involved in 8-oxoG recognition, we constructed four MutY mutants based on similarities to MutT, which hydrolyzes specifically 8-oxo-dGTP to 8-oxo-dGMP. F294A-MutY has a slightly reduced binding affinity to A/G mismatch but has a severe defect in A/8-oxoG binding at 20°C. The catalytic activity of F294A-MutY is much weaker than that of the wild-type MutY. The DNA binding activity of R249A-MutY is comparable to that of the wild-type enzyme but the catalytic activity is reduced with both A/G and A/8-oxoG mismatches. The biochemical activities of F261A-MutY are nearly similar to those of the wild-type enzyme. The solubility of P262A-MutY was improved as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. The binding of GB1-P262A-MutY with both A/G and A/8-oxoG mismatches are slightly weaker than those of the wild-type protein. The catalytic activity of GB1-P262A-MutY is weaker than that of the wild-type enzyme at lower enzyme concentrations. Importantly, all four mutants can complement mutY mutants in vivo when expressed at high levels; however, F294A, R249A and P262A, but not F261A, are partially defective in vivo when they are expressed at low levels. These results strongly support that the C-terminal domain of MutY is involved not only in 8-oxoG recognition, but also affects the binding and catalytic activities toward A/G mismatches.  相似文献   

12.
13.
14.
15.
16.
Lentiviruses, unlike the gammaretroviruses, are able to infect nondividing cells by transiting through nuclear pores to access the host genomic DNA. Several nuclear import and nuclear pore components have been implicated as playing a role in nuclear import, including transportin 3 (TNPO3), a member of the importin-β family of nuclear import proteins. We demonstrated that TNPO3 was required by several lentiviruses, with simian immunodeficiency virus mac239 (SIVmac239) and equine infectious anemia virus (EIAV) the most dependent and human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) the least. Analysis of HIV-1/SIVmac239 chimeric viruses showed that dependence on TNPO3 mapped to the SIVmac239 capsid. Mutation of a single amino acid, A76V in the SIVmac239 capsid, rendered the virus TNPO3 independent and resistant to mCPSF6-358, a truncated splicing factor that prevents HIV-1 nuclear import. Using a complementation assay based on 293T cells that express a TNPO3-targeted short hairpin RNA (shRNA), we showed that the Drosophila TNPO3 homologue can substitute for its human counterpart and that it mapped a key functional domain of TNPO3 to the carboxy-terminal cargo-binding domain. Within the cargo-binding domain, two hydrophobic motifs were required for TNPO3-dependent infection. The mutated TNPO3 proteins maintained their ability to localize to the nucleus, suggesting that their inability to restore lentivirus infection resulted from an inability to bind to a host or viral cargo protein.  相似文献   

17.
Preyer M  Vigneri P  Wang JY 《PloS one》2011,6(2):e17020

Background

The constitutively activated BCR-ABL tyrosine kinase of chronic myeloid leukemia (CML) is localized exclusively to the cytoplasm despite the three nuclear localization signals (NLS) in the ABL portion of this fusion protein. The NLS function of BCR-ABL is re-activated by a kinase inhibitor, imatinib, and in a kinase-defective BCR-ABL mutant. The mechanism of this kinase-dependent inhibition of the NLS function is not understood.

Methodology/Principal Findings

By examining the subcellular localization of mutant BCR-ABL proteins under conditions of imatinib and/or leptomycin B treatment to inhibit nuclear export, we have found that mutations of three specific tyrosines (Y232, Y253, Y257, according to ABL-1a numbering) in the kinase domain can inhibit the NLS function of kinase-proficient and kinase-defective BCR-ABL. Interestingly, binding of imatinib to the kinase-defective tyrosine-mutant restored the NLS function, suggesting that the kinase domain conformation induced by imatinib-binding is critical to the re-activation of the NLS function. The C-terminal region of ABL contains an F-actin binding domain (FABD). We examined the subcellular localization of several FABD-mutants and found that this domain is also required for the activated kinase to inhibit the NLS function; however, the binding to F-actin per se is not important. Furthermore, we found that some of the C-terminal deletions reduced the kinase sensitivity to imatinib.

Conclusions/Significance

Results from this study suggest that an autophosphorylation-dependent kinase conformation together with the C-terminal region including the FABD imposes a blockade of the BCR-ABL NLS function. Conversely, conformation of the C-terminal region including the FABD can influence the binding affinity of imatinib for the kinase domain. Elucidating the structural interactions among the kinase domain, the NLS region and the FABD may therefore provide insights on the design of next generation BCR-ABL inhibitors for the treatment of CML.  相似文献   

18.
19.
Direct interaction of STAT4 with the IL-12 receptor.   总被引:2,自引:0,他引:2  
Signal transduction by interleukin-12 (IL-12) requires phosphorylation and activation of STAT4. Direct interaction of the SH2 domain of STAT4 with a phosphotyrosine residue in the IL-12 receptor has been proposed to be required for the subsequent STAT4 phosphorylation. The IL-12 receptor beta2 subunit contains three tyrosine residues in its cytoplasmic domain. To test the hypothesis that one of these tyrosines is involved in binding STAT4, phosphopeptides were synthesized according to the amino acid sequences surrounding each of these tyrosine residues. Only the phosphopeptide containing pTyr800 strongly bound to STAT4 in a cell-free binding assay. When this phosphopeptide was introduced into TALL-104 cells, it blocked IL-12-induced STAT4 phosphorylation by competing with the IL-12 receptor for binding to STAT4. A series of alanine replacements was performed in this phosphopeptide to elucidate which amino acids surrounding the pTyr800 residue are critical for STAT4 binding. To summarize, the site on the IL-12 receptor which binds STAT4 can be described as -T-X-X-G-pY(800)-L-, where the core G-pY(800)-L motif is critical for the binding; the threonine at the pY-4 position has only a minor contribution and X represents amino acids not critical for the binding. These results demonstrate that only a small region of the IL-12 receptor is critically involved in binding STAT4 and suggest the feasibility that small molecule inhibitors could be identified which interfere with IL-12 signal transduction for treatment of autoimmune diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号