首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inorganica chimica acta》1986,119(2):203-205
Reactions of cis-diaminediaqua palladium and platinum dinitrates and of trans-diaminediaqua platinum dinitrate give complexes of the type Pd(tmeda)(OH)(C4O4)Pd(tmeda)(C4O4H) (tmeda = tetramethylethylenediamine) (1), (en)M(C4O4)2M(en) (en = ethylenediamine (M = Pd, Pt) and trans-[Pt- (NH3)2C4O4]n, respectively. The structures of these compounds are discussed on the basis of their spectroscopic data.  相似文献   

2.
We have reacted [Pt(dien)Cl]Cl, [Pt(en)(D2O)2]2+, and [Pt(Me4en)(D2O)2]2+ [Me4en = N,N,N′,N′-tetramethylethylenediamine] with selenomethionine (SeMet). When [Pt(dien)Cl]Cl is reacted with SeMet, [Pt(dien)(SeMet-Se)]2+ is formed; two Se-CH3 resonances are observed due to the different chiralities at the Se atom upon platination. In a reaction of [Pt(dien)Cl]Cl with an equimolar mixture of SeMet and Met, the SeMet product forms more quickly though a slow equilibrium with approximately equal amounts of both products is reached. [Pt(Me4en)(D2O)2]2+ reacts with SeMet to form [Pt(Me4en)(SeMet-Se)(D2O)]2+ initially but forms [Pt(Me4en)(SeMet-Se,N)]+ ultimately. One stereoisomer of the chelate, assigned to the R chirality at the Se atom, dominates within the first few minutes of reaction. [Pt(en)(D2O)2]2+ forms a variety of products depending on reaction stoichiometry; when one equivalent or less of SeMet is added, the dominant product is [Pt(en)(SeMet-Se,N)]+. In the presence of excess SeMet, [Pt(en)(SeMet-Se)2]2+ is the dominant initially, but displacement of the en ligand occurs leading to [Pt(SeMet-Se,N)2] as the eventual product. Displacement of the en ligand from [Pt(en)(SeMet-Se,N)]+ does not occur. In reactions of K2PtCl4 with two equivalents of SeMet, [Pt(SeMet-Se,N)2] is formed, and three sets of resonances are observed due to different chiralities at the Se atoms. Only the cis geometric isomers are observed by 1H and 195Pt NMR spectroscopy.  相似文献   

3.
Four new coordination polymers namely {[Mn2(BT)(DPS)2(H2O)6]·10H2O}n (MnBTDPS), {[Co2(BT)(DPS)2(H2O)6]·10H2O}n (CoBTDPS), {[Cu2(BT)(DPS)(H2O)4]·5H2O}n (CuBTDPS) and {[Zn2(BT)(DPS)2]·6H2O}n (ZnBTDPS), where BT = 1,2,4,5-benzenetetracarboxylate and DPS = di(4-pyridyl) sulfide, were synthesized and characterized by thermal analysis, vibrational spectroscopy (Raman and infrared) and single crystal X-ray diffraction analysis. In all compounds, the DPS ligands are coordinated to metal sites in a bridging mode and the carboxylate moiety of BT ligands adopts a monodentate coordination mode, as indicated by the Raman spectra data through the Δν (νasym(COO) − νsym(COO)) value. According to X-ray diffraction analysis, MnBTDPS and CoBTDPS are isostructural and in these cases, the metal centers exhibit a distorted octahedral geometry. In CuBTBPP, the Cu2+ centers geometries are best described as square-pyramids, according to the trigonality index τ = 0.14 for Cu1 and τ = 0.10 for Cu2. On the other hand, in ZnBTDPS, the Zn2+ sites adopt a tetrahedral geometry. Finally, the four compounds formed two-dimensional sheets that are connected to each other through hydrogen bonding giving rise to three-dimensional supramolecular arrays.  相似文献   

4.
《Inorganica chimica acta》1986,115(2):153-161
In the reaction of the tetradentate ligand 3,3′-(1,4- butanediyldiamino) bis (3-methyl-2-butanone)-dioxime (BnAO) with nickel(II) and copper(II), the monomeric [Ni(BnAO-H)]I·H2O and a mixed monomer/dimer salt [Cu(BnAO-H)H2O]2[(Cu(BnAO-H))2](ClO4)4, respectively, are formed, and all complexes have an intramolecular hydrogen bond between cis oxime groups. The OHO bonds give the characteristic infrared absorptions as well as the downfield proton-NMR signal (Ni complex). [Ni(BnAO-H)]I·H2O crystallizes in space group P21/a with a=13.511(2), b=10.599(2), c=14.096(2) Å, β=97.52°, Z=4 and Dc=1.623 g/cm3. The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares techniques to a final R of 0.021 for 2124 reflections with I 2σ(I). The nickel(II) atom in the complex has slightly distorted square planar geometry with an intramolecular O···O contact of 2.417(7) Å. The copper(II) complex crystallizes in space group P21/c with a =13.425(2), b=21.446(3), c=14.349(4) Å, β= 104.4(5)°, Z=8 (monomers) and Dc=1.485 g/cm3. The final R value for this complex was 0.053 for 3033 reflections with I 2σ(I). This structure contains a monomeric [Cu(BnAO-H)H2O]+ ion and a dimeric [(Cu(BnAO-H))2]2+ ion, having intramolecular O···O hydrogen bonds of 2.421(5) and 2.531(5) Å, respectively. The copper(II) ions have square-pyramidal coordination with the axial positions occupied by an oxygen of the water of hydration in the monomer and by an oxime oxygen atom in the dimer. A center of symmetry relates the two halves of the dimer. The copper atom in each case is out of the plane of the four nitrogen atoms toward the axial site. The copper(II) complex is unusual in that the crystal contains both a monomer and a dimer.  相似文献   

5.
The cationic complexes (1,2-diaminoethane)(maltolato)platinum(II) ([Pt(en)(ma)]+) and (1R,2R-1,2-diaminocyclohexane)(maltolato)platinum(II) ([Pt(R,R-DACH)(ma)]+) have been prepared and the structure of [Pt(R,R-DACH)(ma)]NO3 has been determined by single crystal X-ray diffraction. The geometry of the metal in [Pt(R,R-DACH)(ma)]NO3 is essentially square planar and the maltolate ligand has a geometry similar to other chelate complexes involving this ligand. The cytotoxicities of the compounds have been assessed in the human cell lines HeLa and K562 and the IC50 values are approximately 32 microM in HeLa cells and 26 microM in K562 cells. In these cell lines the cytotoxicity of cisplatin is higher than the maltolate complexes by a factor of 2 to 3 whereas the cytotoxicity of carboplatin is lower than the maltolate complexes.  相似文献   

6.
7.
Mixed ligand ruthenium(II) complexes containing an amino acid (AA) and 1,10-phenanthroline (phen), i.e. [Ru(AA)(phen)2]n+ (n=1,2, AA=glycine (gly), l-alanine (l-ala), l-arginine (l-arg)) have been synthesized. The interactions of these complexes and [Ru(phen)3]2+ with DNA have been examined by absorption, luminescence, and circular dichroism spectroscopic methods. Absorption spectral properties revealed that [Ru(AA)(phen)2]+ (AA=gly, l-ala) interacted with CT-DNA by the electrostatic binding mode. [Ru(l-arg)(phen)2]2+ exhibited the greatest hypochromicity, red shift, and binding constant, indicating that this complex may partially intercalate into the base-pairs of DNA. These results were also suggested by luminescence spectroscopy. CD spectral properties have been examined to understand the detailed interactions of the ruthenium(II) complexes with artificial DNA. In the case of Δ-[Ru(l-arg)(phen)2]2+, the solution on adding [poly(dG-dC)]2 exhibited two well-defined positive peaks, which the shorter and longer wavelength peaks were assigned as originating from the major and the minor groove binding modes, respectively. Then, the solution on adding [poly(dA-dT)]2 exhibited only one positive peak, which was assigned as a peak corresponding to the minor groove binding mode.  相似文献   

8.
9.
Six new Pt(II) complexes are described having the general formula PtCl(2)(LL), in which LL is a chelating diamine ligand bearing an amino acid as substituent. The amino acids chosen are l-alanine and its methyl ester, and l-phenylalanine. The compounds have been characterized using analytical and spectroscopic methods. The influence on the biological properties of the size of the chelate ring and the structure of the amino acid substituent has been studied. The effect of the presence of a carboxylic or carboxylate group on the amino acid C-terminus has also been determined. It is demonstrated by circular dichroism (CD) that the effect on the secondary structure of DNA induced by the six complexes differ from each other. In all cases, the interaction takes place at the N7 position of the purine bases, as shown by NMR monitoring. The general behavior of these platinum complexes, with one exception, is to uncoil the DNA from the B form to the C form. The interactions with 5'-GMP and DNA have been compared with their expected antitumour activity. The complexes with l-alanine and l-phenylalanine exhibit cytotoxic activity in HeLa and HL-60 cell lines, in a dose- and time-dependent manner. No cytotoxic activity of the methyl ester derivatives have been determined because of their low solubility in aqueous solution.  相似文献   

10.
Syntheses and crystal structures of nickel(II) complexes containing teta (teta N,N′-bis(2-aminoethyl)ethane-1,2-diamine) as a tetradentate blocking ligand and cyanidometallic bridging complexes are described. The complexes [Ni(teta)(cis2-Ni(CN)4)] (1) and [{Ni(teta)}36-Co(CN)6)] (ClO4)3 (2) exhibit a 1D-polymeric structure whereas the heterometallic trinuclear complex [Ni(teta)(μ1-Ag(CN)2)2] (3) forms a unique network. The weak antiferromagnetic exchange was found in polymeric species 1 and 2 by analyzing the magnetic data with several models in which either only susceptibility was treated or simultaneous fitting of temperature and magnetic field dependences of the magnetization was applied using the finite-size closed ring approach. Moreover, an effect of the zero-field splitting phenomenon (ZFS) was considered for 2 by advanced modeling of magnetic properties for varying axial ZFS parameter/isotropic exchange (D/J) ratios.  相似文献   

11.
Novel lipophilic (diamine)platinum(II) complexes of salicylate derivatives as the leaving groups were synthesized and characterized by elemental analysis, FAB(+)-MS, FT-IR, and (1)H NMR spectroscopy. Most of the resulting platinum complexes had high solubility in organic solvents such as ethanol, acetone, and ether, and had right partition coefficient suited to be encapsulated in liposomes. The pertinent complexes were evaluated for their in vitro cytotoxicity against A549 human lung carcinoma and SGC-7901 human gastric carcinoma cell lines. They showed better cytotoxic activity than carboplatin and oxaliplatin.  相似文献   

12.
The reaction of [Ru(CO)2Cl2]n with bis(2-pyridylmethyl)amine (bpma) in refluxing ethanol followed by anion exchange yields two products: cis,fac-[Ru(bpma)(CO)2Cl]PF6 (1a, 71%) and trans,fac-[Ru(bpma)(CO)2Cl]PF6 (1b, 29%). Reaction of 1a with AgBF4 in acetone, followed by acetonitrile and then anion exchange gave cis,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2a). In the same way, 1b afforded trans,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2b). Reaction of depolymerized [Ru(CO)2Cl2]n with bpma in ethanol at room temperature afforded cis,cis-[Ru(η2-bpma)(CO)2Cl2] (3). In refluxing ethanol, 3 was converted to cis,fac-[Ru(bpma)(CO)2Cl]Cl (1a-Cl). Heating 3 in chlorobenzene afforded 1b-Cl, exclusively; heating 3 in ethylene glycol gave mainly 1a-Cl. Heating 1a-Cl in ethanol resulted in no isomerization, but heating in chlorobenzene gave a mixture of 3 and 1b-Cl. Anion exchange for PF6 with 1a-Cl and 1b-Cl afforded 1a and 1b, respectively, whereas anion exchange for BPh4 afforded 1a-BPh4. Compounds 1a, 1b, 2a and 3 have been structurally characterized.  相似文献   

13.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

14.
The ligands 1,3-bis(3-pyridyl)benzene (1), 1,3-bis(4-pyridyl)benzene (2) and 1,3,5-tris(4-pyridyl)benzene (3) have been prepared by Stille coupling of 3- or 4-trimethylstannylpyridine with the appropriate bromoarene. Ligands 1 and 2 react with [M(OTf)2(dppp)] (M=Pd, Pt) to produce the dipalladium- or diplatinum-containing macrocycles [M2(μ-1)2(dppp)2](OTf)4 or [M2(μ-2)2(dppp)2](OTf)4. These have been characterized by NMR spectroscopy and mass spectrometry and, in the case of [Pd2(μ-1)2(dppp)2](OTf)4, by X-ray crystallography. The molecular structure of the [Pd2(μ-1)2(dppp)2]4+ cation reveals a shallow arrangement of the aromatic rings, with the palladium atoms lying above and below. The tridentate ligand 3 reacts with [Pd(OTf)2(dppp)] to produce a trimetallic species of the form [Pd33-3)2(dppp)3](OTf)6.  相似文献   

15.
16.
The products obtained from the reaction of Pt(IV)Cl4(LL) compounds (LL denotes the chelating ligands ethylenediamine (en) and 2,2-dimethyl-1,3-diaminopropane (dmdap), or two cis- or trans-coordinated ammines) with 9-methylhypoxanthine (mHyp) at high temperature (80°C) have been characterized by proton NMR spectroscopy. It appeared that both platinum(II) and platinum(IV) adducts were present in the reaction mixtures. After cation-exchange chromatography, the Pt(II) compound could be characterized as Pt(II)(LL)(mHyp)2, whereas the Pt(TV) fractions appeared to contain mainly one or two adducts for the chelating diamine compound but more adducts for the ammine compounds. A 3J(195Pt-1H) coupling was observed for the Pt(IV), but not for the Pt(II) compounds at the used spectrometer frequency. This supplies a useful tool to discriminate between these two types of platinum adducts.  相似文献   

17.
The reaction of potassium tetrachloroplatinate(II) with six representative sulfurcontaining amino acids, namely,d- andl-cysteine,d- andl-methionine and its methyl ester hydrochloride gives the corresponding enantiomerically purecis-dichloroplatinum(II) complexes. This represents the first reported series of well-characterized enantiomerically pure platinum(II) complexes for bothd- andl-amino acids. The spectroscopic properties, including IR,1H-NMR, and13C NMR, of these complexes and their configuration are discussed.  相似文献   

18.
The amine substituent effect in compounds [Pt(diamine)Cl2] on inhibition of maize and cucumber root growth and branching has been investigated. The diamines used were ethylenediamine (en),N-methylethylenediamine (men),N,N-dimethylethylenediamine (N,N-dmen),N,N-dimethylethylenediamine (N,N-dmen),N,N,N,N-tetramethylethylenediamine (tmen), 1,2-propanediamine (1,2-pn), 2-methyl-1,2-propanediamine (ibn), 2,3 dimethyl-2,3-butanediamine (C-tmen), 1,3-propanediamine (1,3-pn), 2,2-dimethyl-1,3-propanediamine (C2-dm-1,3 pn),N,N-dimethyl-1,3-propanediamine (N,N-dm-1,3-pn). Increased substitution of hydrogen atoms of the amine part with CH3 groups reduces the cytostatic activity of complexes. The substitution of hydrogen atoms of NH2 and vicinal CH2 groups displays similar results. C-2 dimethylation (C-dm-1,3-pn) does not change the activity of the complex compared with (1,3-pn). It was observed that maize and cucumber roots differ in their relative sensitivity to various complexes. All complexes containing pn and their substituted analogs inhibited cucumber root growth weaker than that in maize. A comparison of obtained data with earlier published results concerning antitumor activity of complexes shows that they correlate in a similar manner with increased substitution of amino groups. Therefore, roots may be used as cheap test objects for primary screening of cytostatics. The general tendency of a decrease in cytostatic activity goes parallel with the number of Nor vicinal C-methyl groups and seems to arise from a decrease in hydrogen-bonding potential; however, some other possible reasons are also discussed. The activity discrimination by different species in our experiments and clearly different results forN,N-dimethylation depending on the chelate ring size (en and pn derivatives) on maize cannot be attributed to slower ligand-exchange kinetics from methylation. It is possible to assume that the major role in cytostatic activity of platinum complexes belongs to a cell repair system, i.e. the ability to eliminate platinum diamine fragments from DNA, depending on the number and strength of hydrogen bonds formed by thecis-diamine fragment.  相似文献   

19.
A series of novel platinum(II) complexes involving an asymmetric chelating diamine 2-morpholinoethylamine (MPEA) as the carrier, cis-[Pt(MPEA)X2] (X2 = 2Cl, oxalate, malonate, 1,1-cyclobutanedicarboxylate (CBDCA), 3-hydroxy-1,1-cyclobutanedicarboxylate (HO-CBDCA)), have been synthesized and characterized by elemental analysis and spectroscopic data along with X-ray crystal structure for a representative complex cis-[Pt(MPEA) (CBDCA)]. The Pt(II) is in a square planar environment and is coordinated by a chelating CBDCA and MPEA in cis position. The complexes with dicarboxylate are quite soluble (>25 mg/ml) and stable in water. The cytotoxicity of the complexes has been assessed in the human lung cancer cell lines A549 and A549/ATCC. One complex, cis-[Pt(MPEA)Cl2], is more active than carboplatin against both the sensitive and resistant cells, and has less cross-resistance with cisplatin.  相似文献   

20.
A novel effect of the inhibition of the decomposition of amino acids to carbonates on addition of imidazole (HIm) to a reacting system containing equimolar amounts of copper and zinc metal powders, an amino acid [glycine (Hgly), aspartic acid (H2Asp) or glycylglycine (H2gg)] (1:1:2) and excess hydrogen peroxide (H2O2) resulting in formation of a mixed metal mixed ligand peroxo complex compound was observed, because in the absence of imidazole the corresponding reaction system yields only a mixed metal peroxo carbonate. For the resulting complex compounds, the homogeneity, i.e. [Cu(Zn)(O2 2–)(Gly)2(HIm)(H2O)], [Cu(Zn)(O2 2–)(Asp)(HIm)(H2O)2] or [Cu(Zn)2(O2 2–)2(gg)(HIm)(H2O)4], molecular formula, presence of peroxo group and coordination environment were established by combined physicochemical evidence from elemental and thermogravimetric analysis in air and argon atmospheres, electron spin resonance and electronic and IR spectral data. It is noteworthy to mention that the corresponding carboxylic acids of the above-mentioned amino acids, i.e. acetic and succinic acids, either do not decompose to carbonates in the absence of imidazole or form novel homogeneous peroxo mixed metal mixed ligand complex compounds as described above in the presence of imidazole. This suggests an important and significant mutual influence (in vitro) of biologically active chromophores like peroxo ions, imidazole and amino groups in the above-mentioned chemical reactions containing bioactive metals such as copper and zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号