首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin H(2) (PGH(2)) formed from arachidonic acid is an unstable intermediate and is efficiently converted into more stable arachidonate metabolites by the action of enzymes. Prostaglandin F synthase (PGFS) has dual catalytic activities: formation of PGF(2)(alpha) from PGH(2) by the PGH(2) 9,11-endoperoxide reductase activity and 9alpha,11beta-PGF(2) (PGF(2)(alphabeta)) from PGD(2) by the PGD(2) 11-ketoreductase activity in the presence of NADPH. Bimatoprost (BMP), which is a highly effective ocular hypotensive agent, is a PGF(2)(alpha) analogue that inhibits both the PGD(2) 11-ketoreductase and PGH(2) 9,11-endoperoxide reductase activities of PGFS. To examine the catalytic mechanism of PGH(2) 9,11-endoperoxide reductase, a crystal structure of PGFS[NADPH + BMP] has been determined at 2.0 A resolution. BMP binds near the PGD(2) binding site, but the alpha- and omega-chains of BMP are locate on the omega- and alpha-chains of PGD(2), respectively. Consequently, the bound BMP and PGD(2) direct their opposite faces of the cyclopentane moieties toward the nicotinamide ring of the bound NADP. The alpha- and omega-chains of BMP are involved in H-bonding with protein residues, while the cyclopentane moiety is surrounded by water molecules and is not directly attached to either the protein or the bound NADPH, indicating that the cyclopentane moiety is movable in the active site. From the complex structure, two model structures of PGFS containing PGF(2)(alpha) and PGH(2) were built. On the basis of the model structures and inhibition data, a putative catalytic mechanism of PGH(2) 9,11-endoperoxide reductase of PGFS is proposed. Formation of PGF(2)(alpha) from PGH(2) most likely involves a direct hydride transfer from the bound NADPH to the endoperoxide of PGH(2) without the participation of specific amino acid residues.  相似文献   

2.
In a previous paper, we reported that the partial amino acid sequence (225 residues) from the COOH terminus of rho-crystallin from European common frog lens shows 77% similarity to that of prostaglandin (PG) F synthetase, an aldo-keto reductase, from bovine lung (Watanabe, K., Fujii, Y., Nakayama, K., Ohkubo, H., Kuramitsu, S., Kagamiyama, H., Nakanishi, S., and Hayaishi, O. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 11-15). Here rho-crystallin was purified to apparent homogeneity from the eye lens of the Japanese common bullfrog (Rana catesbeiana) by four sequential chromatographies using Sephadex G-100, Red Sepharose, and dual Mono S. Two types of rho-crystallin, RHO-I and RHO-II, named according to their elution order from a Mono S column, are essentially identical in terms of immunochemical properties, amino acid composition, and partial amino acid sequence. But the NH2-terminal Thr of RHO-I is blocked with an acyl group, while that of RHO-II is free. Both crystallins as well as PGF synthetase are monomeric proteins with a molecular weight of about 35,000 and they have the ability to bind NADPH with a stoichiometry of 0.75 mol of cofactor/mol of protein. Although rho-crystallin does not cross-react with antibody against PGF synthetase, the NH2-terminal amino acid sequence (107 residues) of rho-crystallin shows 77% similarity to that of the enzyme. However, PGD2, PGE2, 9,10-phenanthrenequinone, p-nitrobenzaldehyde, DL-glyceraldehyde, D-glucuronic acid, D-glucose, D-xylose, menadione, p-nitroacetophenone, dihydroxyacetone, succinic semialdehyde, phenylglyoxal, and testosterone were not substrates for these crystallins. PGH2 9,11-endoperoxide reductase activities of RHO-I and RHO-II were 1.3 and 1.0 milliunits/mg of protein, respectively, which are only about 2% of that of bovine lung PGF synthetase. These results indicate that the rho-crystallins RHO-I and RHO-II belong to a group of aldo-keto reductases based on primary structure, molecular properties, and NADPH-binding ability, but show only low PGH2 9,11-endoperoxide reductase activity.  相似文献   

3.
Prostaglandin (PG) endoperoxide synthetase was purified until homogeneity had been attained. The pure enzyme displays both cyclooxygenase and peroxidase activity, in accordance with the work of MIYAMOTO et al. (J. biol. Chem. 252, 2629--2636 (1976)). This enzyme therefore converts arachidonic acid into PGH2. Glutathione S-transferases, in the presence of glutathione, convert PGH2 into a mixture of PGF2alpha, PGE2 and PGD2. A new transferase in sheep lung gives mainly PGF2alpha and PGD2. Isolation and properties of these enzymes will be discussed. Finally, progress will be reported on the isolation of a soluble enzyme from various rat organs such as lung and spleen, which forms almost exclusively prostaglandin D.  相似文献   

4.
Prostaglandin (PG) D(2) ethanolamide (prostamide D(2)) was reduced to 9alpha,11beta-PGF(2) ethanolamide (9alpha,11beta-prostamide F(2)) by PGF synthase, which also catalyzes the reduction of PGH(2) and PGD(2) to PGF(2alpha) and 9alpha,11beta-PGF(2), respectively. These enzyme activities were measured by a new method, the liquid chromatographic-electrospray ionization-mass spectrometry (LC/ESI/MS) technique, which could simultaneously detect the substrate and all products. PGF(2alpha), 9alpha,11beta-PGF(2), PGD(2), PGH(2), 9alpha,11beta-prostamide F(2), and prostamide D(2) were separated on a TSKgel ODS 80Ts column, ionized by electrospray, and detected in the negative mode. Selected ion monitoring (SIM) of m/z 353 ([M-H](-)), 353 ([M-H](-)), 351 ([M-H](-)), 333 ([M-H-H(2)O](-)), 456 ([M+59](-)), and m/z 358 ([M-37](-)) was used for quantifying PGF(2alpha), 9alpha,11beta-PGF(2), PGD(2), PGH(2), 9alpha,11beta-prostamide F(2), and prostamide D(2), respectively. The detection limit for PGF(2alpha) and 9alpha,11beta-PGF(2) was 0.01pmol; that for PGH(2) and PGD(2), 0.1pmol; and that for prostamide D(2) and 9alpha,11beta-prostamide F(2), 0.5 and 0.03pmol, respectively. The LC/ESI/MS technique for measuring PGF synthase activity showed higher sensitivity than other methods. Using this method, we found that Bimatoprost, the ethyl amide analog of 17-phenyl-trinor PGF(2alpha) and an anti-glaucoma agent, inhibited all three reductase activities of PGF synthase when used at a low concentration. These results suggest that Bimatoprost also behaves as a potent PGF synthase inhibitor in addition to having prostamide-like activity.  相似文献   

5.
Prostaglandin F(2 alpha) is a potent mediator of various physiological and pathological processes. Trypanosoma brucei prostaglandin F(2 alpha) synthase (TbPGFS) catalyzes the NADPH-dependent reduction of 9,11-endoperoxide PGH(2) to PGF(2 alpha), and could thus be involved in the elevation of the PGF(2 alpha) concentration during African trypanosomiasis. In the present report, the purification and crystallization of recombinant TbPGFS are described. The active recombinant enzyme was crystallized by the hanging-drop vapor-diffusion meth-od using ammonium sulfate as a precipitant. The crystal belonged to a tetragonal space group, P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters of a = b = 112.3 A, and c = 140.0 A. Native data up to 2.6 A resolution were collected from the crystal using our home facility.  相似文献   

6.
The full-length bovine lung prostaglandin(PG) F synthase cDNA was constructed from partial cDNA clones and ligated into bacterial expression vector pUC8 to develop expression plasmid pUCPF1. This plasmid permitted the synthesis of bovine lung PGF synthase in Escherichia coli. The recombinant bacteria overproduced a 36-KDa protein that was recognized by anti-PGF synthase antibody, and the expressed protein was purified to apparent homogeneity. The expressed protein reduced not only carbonyl compounds including PGD2 and phenanthrenequinone but also PGH2; and the Km values for phenanthrenequinone, PGD2, and PGH2 of the expressed protein were 0.1, 100, and 8 microM, respectively, which are the same as those of the bovine lung PGF synthase. The protein produced PGF2 alpha from PGH2, and 9 alpha, 11 beta-PGF2 from PGD2 at different active sites. Moreover, the structure of the purified protein from Escherichia coli was essentially identical to that of the native enzyme in terms of C-terminal sequence, sulfhydryl groups, and CD spectra except that the nine amino acids provided by the lac Z' gene of the vector were fused to the N-terminus. These results indicate that the expressed protein is essentially identical to bovine lung PGF synthase. We confirmed that PGF synthase is a dual function enzyme catalyzing the reduction of PGH2 and PGD2 on a single enzyme and that it has one binding site for NADPH.  相似文献   

7.
In recent years, growing evidence suggests that glutathione peroxidases (GSH-Pxs), both selenium-dependent GSH-Px (Se-GSH-Px) and selenium-independent GSH-Px (non-Se-GSH-Px) play an important role in the biosynthesis of prostaglandins and leukotrienes and in the regulation of key enzymes associated with the arachidonic acid cascade. The precise nature of their involvement in eicosanoid metabolism, however, is not yet completely understood. In the study reported here, we have systematically determined the catalytic efficiencies of Se-GSH-Px and non-Se-GSH-Px toward prostaglandin (PG) G2 (PGG2) and PGH2. Se-GSH-Px exhibited high catalytic activity for the reduction of PGG2 as indicated by Km and Vmax values of 12 microM and 78 mumol/min/mg, respectively, whereas PGH2 was found to be a poor substrate, an indication that Se-GSH-Px reduces the hydroperoxide moiety but not the endoperoxide moiety of PGG2. The kinetic constants of Se-GSH-Px toward PGG2 were comparable to those determined for such classical substrates as H2O2 and cumene hydroperoxide. In contrast to Se-GSH-Px, non-Se-GSH-Px associated with cationic isozyme II of glutathione S-transferases (GSTs) from sheep lung cytosol was very active in the conversion of PGH2 to PGF2 alpha with a Vmax of 960 nmol/min/mg and a Km of 77 microM. This study shows that PGF2 alpha formation by non-Se-GSH-Px occurred in a GSH-dependent reduction of either PGG2 or PGH2. When PGG2 was used as the substrate for non-Se-GSH-Px, a novel intermediate compound appeared and was later identified by several methods of structural analysis as 15-hydroperoxy PGF2 alpha. Thus, the reductive cleavage of the endoperoxide occurs faster than the 15-hydroperoxide reduction allowing 15-hydroperoxy PGF2 alpha to accumulate briefly. A study of GSTs from several different tissues and species indicated that the transformation of PG endoperoxides to PGF2 alpha is catalyzed specifically by GST isozymes, which contain Ya size subunits. This specificity of GST isozymes in PG biosynthesis, coupled with their tissue-specific expression, may be a mechanism by which the body modulates the type of PGs produced in these tissues. Also, these results suggest a possible interaction of Se-GSH-Px and non-Se-GSH-Px in the biosynthesis of PGF2 alpha.  相似文献   

8.
Prostaglandin F synthetase from bovine lung was purified 540-fold to apparent homogeneity, as assessed by polyacrylamide gel electrophoreses and ultracentrifugation. The purified enzyme proved to be a monomeric protein with a molecular weight of about 30,500. The enzyme catalyzed not only the reduction of the 11-keto group of prostaglandin D2 but also the reduction of 9,11-endoperoxide of prostaglandin H2 and various carbonyl compounds (e.g. phenanthrenequinone). Experiments using column chromatography, polyacrylamide gel electrophoreses, immunotitration using antibody against the purified enzyme, and heat treatment indicated that three enzyme activities resided in a single protein. Although phenanthrenequinone and prostaglandin D2 competitively inhibited the prostaglandin D2 and phenanthrenequinone reductase activities, respectively, these two substrates were all but ineffective on the prostaglandin H2 (at the Km value) reductase activity up to 14-fold of those Km values. These results suggest that a single enzyme protein purified from the bovine lung catalyzes the reduction of prostaglandin D2, prostaglandin H2, and various carbonyl compounds and that prostaglandin D2 and prostaglandin H2 are metabolized at two different active sites, yielding prostaglandin F2 alpha as the reaction product.  相似文献   

9.
When prostaglandin H2 (PGH2) was incubated with a mixture of glutathione S-transferases (GSTs) obtained from S-hexylglutathione affinity chromatography, as much as 40% of it was transformed into a prostanoid whose Rf value corresponded to that of the standard PGF2 alpha. The reaction product was identified as PGF2 alpha by cochromatography with a standard on TLC and HPLC. The stereochemistry of the hydroxyl groups on C-9 and C-11 of the cyclopentane ring was confirmed by mass-spectral analysis of the butylboronate derivative of the reaction product. Neither PGE2 nor PGD2 could substitute for PGH2 in the reaction mixture, indicating that the mechanism of formation of PGF2 alpha is a direct two-electron reduction of the endoperoxide moiety and not through a reduction of the keto group on PGE2 or PGD2. Individual GST isozymes exhibited distinct differences in their catalytic rates of formation of PGF2 alpha from PGH2. Among various GSTs, isozyme IV, a homodimer of Ya size subunit showed the highest activity with a Vmax value of approximately 6000 nmol.min-1.mg-1. In general, the isozymes containing Ya and Yc subunits exhibited relatively high activity toward PGH2, indicating that it is the non-selenium-dependent glutathione peroxidase activity associated with the GSTs that might be responsible for the reduction of PGH2 to PGF2 alpha. Interestingly, isozyme IV also exhibited the highest PGE2 forming activity with a Vmax value of approximately 3000 nmol.min-1.mg-1 followed by isozyme I, a homodimer of Yb subunit, which had a Vmax value of 420 nmol.min-1.mg-1. Based on these results, it appears that the GSTs play an important role in the biosynthesis of classical PGs. Therefore, it is conceivable that the tissue-specific formation of PGF2 alpha and PGE2 might, in part, be due to the relative distribution of these enzyme activities in a given tissue. Our results have not only confirmed the previously published reports (E. Christ-Hazelhof et al. (1976) Biochim. Biophys. Acta 450, 450-461), but also have characterized the specificity of GST isozymes in the formation of PGF2 alpha.  相似文献   

10.
Prostaglandin F (PGF) ethanolamide (prostamide F) synthase, which catalyzed the reduction of prostamide H(2) to prostamide F(2alpha), was found in mouse and swine brain. The enzyme was purified from swine brain, and its amino acid sequence was defined. The mouse enzyme consisted of a 603-bp open reading frame coding for a 201-amino acid polypeptide with a molecular weight of 21,669. The amino acid sequence placed the enzyme in the thioredoxin-like superfamily with Cys(44) being the active site. The enzyme expressed in Escherichia coli as well as the native enzyme catalyzed not only the reduction of prostamide H(2) to prostamide F(2alpha) but also that of PGH(2) to PGF(2alpha). The V(max) and K(m) values for prostamide H(2) were about 0.25 micromol/min.mg of protein and 7.6 microm, respectively, and those for PGH(2) were about 0.69 micromol/min.mg of protein and 6.9 microm, respectively. Neither PGE(2) nor PGD(2) served as a substrate for this synthase. Based on these data, we named the enzyme prostamide/PGF synthase. Although the enzyme showed a broad specificity for reductants, reduced thioredoxin preferentially served as a reducing equivalent donor for this enzyme. Moreover, Northern and Western blot analyses in addition to the prostamide F synthase activity showed that the enzyme was mainly distributed in the brain and spinal cord, and the immunohistochemical study in the spinal cord showed that the enzyme was found mainly in the cytosol. These results suggest that prostamide/PGF synthase may play an important functional role in the central nervous system.  相似文献   

11.
Glutathione S-transferases (GSTs) purified from both rat liver cytosol and microsomes catalyzed the direct reduction of PGH2 to PGF2 alpha. As much as 40% of the substrate was transformed into a prostanoid whose Rf value corresponded to that of PGF2 alpha. The identification of the reaction product as PGF2 alpha was confirmed by TLC and reverse-phase HPLC as well as by mass spectral analysis. In the absence of GSTs, PGH2 was found to be primarily converted to PGE2 and PGD2. Also, PGF2 alpha formation was completely abolished by decylglutathione, a potent inhibitor of both peroxidase and transferase activity associated with GSTs. These results indicate that the direct reduction of endoperoxide moiety of PGH2 to form PGF2 alpha is an enzymatic process. Interestingly, selenium-dependent glutathione peroxidase (Se-GSH-Px) showed very little PGF2 alpha formation from PGH2. However, this enzyme was very active in the reduction of PGG2 to PGH2. In contrast, GSTs were very poor in the conversion of PGG2 to PGH2. Therefore, it is possible that the relative tissue distribution of Se-GSH-Px and GSTs might play an important role in the tissue specific synthesis of PGF2 alpha.  相似文献   

12.
Lysates of Leishmania promastigotes can metabolise arachidonic acid to prostaglandins. Prostaglandin production was heat sensitive and not inhibited by aspirin or indomethacin. We cloned and sequenced the cDNA of Leishmania major, Leishmania donovani, and Leishmania tropica prostaglandin F(2alpha) synthase, and overexpressed their respective 34-kDa recombinant proteins that catalyse the reduction of 9,11-endoperoxide PGH(2) to PGF(2alpha). Database search and sequence alignment alignment showed that L. major prostaglandin F(2alpha) synthase exhibits 61, 99.3, and 99.3% identity with Trypanosoma brucei, L. donovani, and L. tropica prostaglandin F(2alpha) synthase, respectively. Using polymerase chain reaction amplification, Western blotting, and immunofluorescence, we have demonstrated that prostaglandin F(2alpha) synthase protein and gene are present in Old World and absent in New World Leishmania, and that this protein is localised to the promastigote cytosol.  相似文献   

13.
Lysates of Leishmania promastigotes can metabolise arachidonic acid to prostaglandins. Prostaglandin production was heat sensitive and not inhibited by aspirin or indomethacin. We cloned and sequenced the cDNA of Leishmania major, Leishmania donovani, and Leishmania tropica prostaglandin F(2alpha) synthase, and overexpressed their respective 34-kDa recombinant proteins that catalyse the reduction of 9,11-endoperoxide PGH(2) to PGF(2alpha). Database search and sequence alignment showed that L. major prostaglandin F(2alpha) synthase exhibits 61, 99.3, and 99.3% identity with Trypanosoma brucei, L. donovani, and L. tropica prostaglandin F(2alpha) synthase, respectively. Using polymerase chain reaction amplification, Western blotting, and immunofluorescence, we have demonstrated that prostaglandin F(2alpha) synthase protein and gene are present in Old World and absent in New World Leishmania, and that this protein is localised to the promastigote cytosol.  相似文献   

14.
Prostaglandin H(2) (PGH(2)) formed from arachidonic acid is an unstable intermediate and is efficiently converted into more stable arachidonate metabolites (PGD(2), PGE(2), and PGF(2)) by the action of three groups of enzymes. Prostaglandin F synthase (PGFS) was first purified from bovine lung and catalyzes the formation of 9 alpha,11 beta-PGF(2) from PGD(2) and PGF(2)(alpha) from PGH(2) in the presence of NADPH. Human PGFS is 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) type II and has PGFS activity and 3 alpha-HSD activity. Human lung PGFS has been crystallized with the cofactor NADP(+) and the substrate PGD(2), and with the cofactor NADPH and the inhibitor rutin. These complex structures have been determined at 1.69 A resolution. PGFS has an (alpha/beta)(8) barrel structure. The cofactor and substrate or inhibitor bind in a cavity at the C-terminal end of the barrel. The cofactor binds deeply in the cavity and has extensive interactions with PGFS through hydrogen bonds, whereas the substrate (PGD(2)) is located above the bound cofactor and has little interaction with PGFS. Despite being largely structurally different from PGD(2), rutin is located at the same site of PGD(2), and its catechol and rhamnose moieties are involved in hydrogen bonds with PGFS. The catalytic site of PGFS contains the conserved Y55 and H117 residues. The carbonyl O(11) of PGD(2) and the hydroxyl O(13) of rutin are involved in hydrogen bonds with Y55 and H117. The cyclopentane ring of PGD(2) and the phenyl ring of rutin face the re-side of the nicotinamide ring of the cofactor. On the basis of the catalytic geometry, a direct hydride transfer from NADPH to PGD(2) would be a reasonable catalytic mechanism. The hydride transfer is facilitated by protonation of carbonyl O(11) of PGD(2) from either H117 (at low pH) or Y55 (at high pH). Since the substrate binding cavity of PGFS is relatively large in comparison with those of AKR1C1 and AKR1C2, PGFS (AKR1C3) could catalyze the reduction and/or oxidation reactions of various compounds over a relatively wide pH range.  相似文献   

15.
The inhibition of human platelet aggregation produced by PGF2 alpha is not specific for thromboxane A2 mimetics. Aggregation waves induced by PAF and thrombin are also inhibited by PGF2 alpha (8 microM); ADP is unaffected. These effects are still seen in platelets from aspirin-treated donors and platelets desensitized to thromboxane-like agonists (e.g. 11,9-epoxymethano PGH2). In contrast the thromboxane receptor antagonist EP 045 (up to 20 microM) had no effect on primary aggregation induced by PAF, thrombin and ADP. We have previously shown that EP 045 (IC50 = 0.5 microM), but not PGF2 alpha (28 microM), displaces the specific binding of [3H] 9,11-epoxymethano PGH2 to washed human platelets. PGF2 alpha produces small increases in cAMP levels, and both this effect and the anti-aggregation are diminished by the adenyl cyclase inhibitor SQ 22536. The rise in cAMP induced by PGF2 alpha is inhibited to a greater extent by the presence of ADP than by thrombin, PAF or a thromboxane mimetic. The ability of aggregating agents to inhibit this increase correlates inversely with their sensitivity to inhibition by PGF2 alpha. We suggest that the very weak effect of PGF2 alpha on cyclic AMP production is sufficient to account for its inhibitory activity, and it is unlikely to be a competitive antagonist at the platelet thromboxane receptor as suggested by others.  相似文献   

16.
The role of prostaglandins (PGs) in liver injury induced by D-galactosamine was investigated in the rat. The contents of PGD2 and PGF2 alpha in the liver were significantly increased from 3 h and 24 h after the D-galactosamine administration, respectively, but that of PGE2 was not significantly changed. Administration of 16,16-dimethyl PGE2, a long acting derivative of PGE2, or indomethacin, but not 16,16-dimethyl PGF2 alpha, a long acting derivative of PGF2 alpha, significantly depressed the increase in the serum transaminase activities induced by D-galactosamine. The protective effect of indomethacin was not disturbed by the 16, 16-dimethyl PGF2 alpha administration. These results indicate that PGE2 has a cytoprotective effect against the D-galactosamine induced liver injury and suggest that the protective effect of indomethacin is ascribable to its suppression of synthesis of PGs other than PGE2 or PGF2 alpha, e.g., PGD2.  相似文献   

17.
Distinct functional coupling between cyclooxygenases (COXs) and specific terminal prostanoid synthases leads to phase-specific production of particular prostaglandins (PGs). In this study, we examined the coupling between COX isozymes and PGF synthase (PGFS). Co-transfection of COXs with PGFS-I belonging to the aldo-keto reductase family into HEK293 cells resulted in increased production of PGF(2alpha) only when a high concentration of exogenous arachidonic acid (AA) was supplied. However, this enzyme failed to produce PGF(2alpha) from endogenous AA, even though significant increase in PGF(2alpha) production occurred in cells transfected with COX-2 alone. This poor COX/PGFS-I coupling was likely to arise from their distinct subcellular localization. Measurement of PGF(2alpha)-synthetic enzyme activity in homogenates of several cells revealed another type of PGFS activity that was membrane-bound, glutathione (GSH)-activated, and stimulus-inducible. In vivo, membrane-bound PGFS activity was elevated in the lung of lipopolysaccharide-treated mice. Taken together, our results suggest the presence of a novel, membrane-associated form of PGFS that is stimulus-inducible and is likely to be preferentially coupled with COX-2.  相似文献   

18.
Prostaglandin H2 (PGH2) inhibited noradrenaline induced cyclic AMP accumulation in isolated rat fat cells in a dose-dependent manner. IC50 was 10-25 ng/ml both in the absence and in the presence of theophylline. The degree of inhibition produced by PGH2 increased with time of incubation. A stable PGH2 analog did not inhibit cyclic AMP accumulation. PGH2 was rapidly converted by isolated fat cells to PGD2, PGE2 and PGF2alpha' but no formation of thromboxane B2 was found either in vitro or in vivo. PGE2 was a more potent inhibitor than PGH2 of noradrenaline induced cyclic AMP accumulation. PGD2 enhanced cyclic AMP accumulation in a limited concentration interval, while PGF2alpha was essentially uneffective. Our results suggest that PGH2 is an inhibitor of cyclic AMP formation in isolated rat fat cells only after conversion to PGE2. A physiological role for PGH2 as a modulator of lipolysis is considered unlikely.  相似文献   

19.
Differences in binding characteristics between agonists and antagonists for the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were examined in rat cultured vascular smooth muscle cells (VSMC). Scatchard analysis indicated the existence of two binding sites for the TXA2/PGH2 agonist, whereas a single class of recognition sites for the receptor antagonists were observed with approximately the same maximum binding capacity (Bmax) as a high-affinity binding site of the agonist. Weak binding inhibition by approx. 100 nM of primary prostanoids (PGE1, PGF2 alpha and PGD2) was detected only with the TXA2/PGH2 agonist, and not with the antagonist. Primary prostanoids as well as TXA2/PGH2 agonists (U46619 and STA2) suppressed the [3H]PGF2 alpha and [3H]PGE1 binding with almost the same potency, whereas TXA2/PGH2 antagonists (S-145, SQ29,548 and ONO3708) did not. The Bmax value of the binding sites was roughly identical in PGF2 alpha, PGE1 and a low-affinity binding site of U46619. These results suggest the existence of two binding sites for TXA2/PGH2 in VSMC, i.e., a high-affinity binding site corresponding to that of the TXA2/PGH2 antagonists and a low-affinity binding site in common with primary prostanoids.  相似文献   

20.
A novel cytochrome P450, CYP4F8, was recently cloned from human seminal vesicles. CYP4F8 was expressed in yeast. Recombinant CYP4F8 oxygenated arachidonic acid to (18R)-hydroxyarachidonate, whereas prostaglandin (PG) D(2), PGE(1), PGE(2), PGF(2alpha), and leukotriene B(4) appeared to be poor substrates. Three stable PGH(2) analogues, 9,11-epoxymethano-PGH(2) (U-44069), 11, 9-epoxymethano-PGH(2) (U-46619), and 9,11-diazo-15-deoxy-PGH(2) (U-51605) were rapidly metabolized by omega2- and omega3-hydroxylation. U-44069 was oxygenated with a V(max) of approximately 260 pmol min(-)(1) pmol P450(-1) and a K(m) of approximately 7 micrometer. PGH(2) decomposes mainly to PGE(2) in buffer and to PGF(2alpha) by reduction with SnCl(2). CYP4F8 metabolized PGH(2) to 19-hydroxy-PGH(2), which decomposed to 19-hydroxy-PGE(2) in buffer and could be reduced to 19-hydroxy-PGF(2alpha) with SnCl(2). 18-Hydroxy metabolites were also formed (approximately 17%). PGH(1) was metabolized to 19- and 18-hydroxy-PGH(1) in the same way. Microsomes of human seminal vesicles oxygenated arachidonate, U-44069, U-46619, U-51605, and PGH(2), similar to CYP4F8. (19R)-Hydroxy-PGE(1) and (19R)-hydroxy-PGE(2) are the main prostaglandins of human seminal fluid. We propose that they are formed by CYP4F8-catalyzed omega2-hydroxylation of PGH(1) and PGH(2) in the seminal vesicles and isomerization to (19R)-hydroxy-PGE by PGE synthase. CYP4F8 is the first described hydroxylase with specificity and catalytic competence for prostaglandin endoperoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号