首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus.  相似文献   

3.
4.
The hypothesis that the cellular protein Crm1 mediates human immunodeficiency virus type 1 (HIV-1) Rev-dependent nuclear export posits that Crm1 can directly interact both with the Rev nuclear export signal (NES) and with cellular nucleoporins. Here, we demonstrate that Crm1 is indeed able to interact with active but not defective forms of the HIV-1 Rev NES and of NESs found in other retroviral nuclear export factors. In addition, we demonstrate that Crm1 can bind the Rev NES when Rev is assembled onto the Rev response element RNA target and that Crm1, like Rev, is a nucleocytoplasmic shuttle protein. Crm1 also specifically binds the Rev NES in vitro, although this latter interaction is detectable only in the presence of added Ran · GTP. Overexpression of a truncated, defective form of the nucleoporin Nup214/CAN, termed ΔCAN, that retains Crm1 binding ability resulted in the effective inhibition of HIV-1 Rev or human T-cell leukemia virus Rex-dependent gene expression. In contrast, ΔCAN had no significant affect on Mason-Pfizer monkey virus constitutive transport element (MPMV CTE)-dependent nuclear RNA export or on the expression of RNAs dependent on the cellular mRNA export pathway. As a result, ΔCAN specifically blocked late, but not early, HIV-1 gene expression in HIV-1-infected cells. These data strongly validate Crm1 as a cellular cofactor for HIV-1 Rev and demonstrate that the MPMV CTE nuclear RNA export pathway uses a distinct, Crm1-independent mechanism. In addition, these data identify a novel and highly potent inhibitor of leucine-rich NES-dependent nuclear export.  相似文献   

5.
6.
The HIV-1 Rev protein facilitates the nuclear export of mRNA containing the Rev response element (RRE) through binding to the export receptor CRM-1. Here we show that a cellular nuclear protein, Sam68 (Src-associated protein in mitosis), specifically interacts with RRE and can partially substitute for as well as synergize with Rev in RRE-mediated gene expression and virus replication. Differential sensitivity to leptomycin B, an inhibitor of CRM-1, indicates that the export pathways mediated by Rev and Sam68 are distinct. C-terminally deleted mutants of Sam68 inhibited the transactivation of RRE-mediated expression by both wild-type Sam68 and Rev. They were retained in the cytoplasm and impeded the nuclear localization of Rev in co-expressed cells. These mutants also inhibited wild-type HIV-1 replication to the same extent as the RevM10 mutant, and may be useful as anti-viral agents in the treatment of AIDS.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) regulatory protein, Rev, mediates the nuclear export of unspliced and singly spliced viral mRNAs by bridging viral RNA and export receptor human CRM1 (hCRM1). Ribonucleoprotein complex formation, including the oligomerization of Rev proteins on viral RNA, must occur to allow export. We show here that Rev-Rev interactions, which are a basis of complex formation, can be initiated without cellular factors and are subsequently enhanced by hCRM1-Ran-GTP. Furthermore, we reveal functions for the Rev carboxy-terminal (C-terminal) region, which is well conserved among many HIV-1 strains, and for which no function has been reported. This region is required for the efficient binding of Rev to hCRM1 and consequently for nuclear export, Rev-Rev dimerization, and full Rev transactivator activity. Consistent with these results, a HIV-1 proviral plasmid that expresses a C-terminally truncated Rev mutant protein produces smaller amounts of the p24 antigen than does a plasmid that possesses an intact rev gene. These results indicate the functional importance of the C-terminal region for full Rev activity, which leads to efficient HIV-1 replication.  相似文献   

8.
Rev has been shown to promote the export of HIV-1 RNAs fromXenopus oocyte nuclei, but a system to examine the direct effect of Rev on HIV-1 RNA export in mammalian somatic cells does not exist. In this report, the development of a cell-free RNA export system using COS cells is described. This system is capable of examining the movement of RNA from nuclei of COS cells transfected with an HIV-1 proviral construct into reconstituted cytosol from nontransfected cells. A reproducible preparation of nuclei free of residual cytoplasmic RNA is demonstrated. Export of RNA from these nuclei into reconstituted cell-free extracts was saturable and dependent on temperature and energy. Further validation of the system was obtained by confirming that the nuclear export of HIV-1-unspliced and partially spliced RNAs was dependent upon the expression of HIV-1 Rev and that the presence of Rev appeared to decrease the export of an HIV-1-spliced RNA. The system was also able to demonstrate that Rev did not appear to significantly enhance the export of an HIV-1 protease-containing RNA that has been shown to be dependent upon Rev for maximal expression. Consequently, the system appears useful for the examination of parameters of nuclear export of HIV-1 and cellular RNAs.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) Rev protein facilitates the nuclear export of viral mRNA containing the Rev response element (RRE). Although several host proteins co-operating with Rev in viral RNA export have been reported, little is known about the innate host defense factors that Rev overcomes to mediate the nuclear export of unspliced viral mRNAs. We report here that an anti-apoptotic protein, HS1-associated protein X-1 (Hax-1), a target of HIV-1 Vpr, interacts with Rev and inhibits its activity in RRE-mediated gene expression. Co-expression of Sam68 emancipates Rev activity from Hax-1-mediated inhibition. Hax-1 does not bind to RRE RNA by itself, but inhibits Rev from binding to RRE RNA in vitro. The impact of Hax-1 on Rev/RRE interactions in vitro correlates well with the reduced level of RRE-containing mRNA in vivo. Immunofluorescence studies further reveal that Hax-1 and Rev are cytoplasmic and nuclear proteins, respectively, when expressed independently. However, in Hax-1 co-expressing cells, Rev is translocated from the nucleus to the cytoplasm, where it is co-localized with Hax-1 in the cytoplasm. We propose that over-expression of Hax-1, possibly through binding to Rev, may interfere with the stability/export of RRE-containing mRNA and target the RNA for degradation.  相似文献   

10.
11.
12.
Li J  Liu Y  Park IW  He JJ 《Journal of virology》2002,76(9):4526-4535
Human immunodeficiency virus type 1 (HIV-1) gene expression in astrocytes is restricted, resulting in a brief and limited synthesis of HIV-1 viral structural proteins. Impaired Rev function has been documented in these cells. However, the molecular mechanisms underlying the impaired Rev function are not fully understood. Using the astroglial cell line U87.MG as a model, we report here that HIV-1 gene expression down-regulated expression of Sam68, the 68-kDa Src-associated protein in mitosis, which was constitutively expressed at a lower level in astrocytes. Elevating the endogenous level of Sam68 expression considerably restored HIV-1 Rev function in astrocytes, as determined by a Rev-dependent reporter gene assay. However, elevation of Sam68 expression achieved only a modest increase in HIV-1 production, further supporting the notion that there are multiple cellular restrictions of HIV-1 gene expression in astrocytes. Mutagenesis analysis identified the region between amino acids 321 and 410 of Sam68 as being directly involved in the binding of Sam68 to Rev, while a double mutation in Rev, L78D and E79L, like those in the dominant-negative Rev mutant M10, eliminated Rev binding to Sam68. Moreover, subcellular fractionation and digital fluorescence microscopic imaging revealed that Sam68 expression promoted Rev nuclear export. Taken together, our studies demonstrate that a lower level of constitutive Sam68 expression, followed by further down-regulation by HIV-1 infection, contributes to impaired Rev function in astrocytes, and they suggest that Sam68 may play an important role in Rev nuclear export.  相似文献   

13.
Srinivasakumar N 《PloS one》2011,6(12):e28462
The use of RNA transport elements from different viruses can provide novel attributes to HIV-1-based gene delivery systems such as improved safety or Rev independence. We previously described an HIV-1 based gene delivery system that utilized the simian immunodeficiency virus Rev-response element (RRE) in place of the HIV-1 RRE. Despite the use of Rev for the production of vector stocks, we showed the utility of this system for delivery of Rev M10, a dominant-negative mutant of HIV-1 Rev, into T-cells. Here, we investigated the use of RNA transport elements from Mason-Pfizer monkey virus or MPMV for the creation of high-titered Rev-free HIV-1-based packaging systems. The HIV-1 gag/pol expression constructs containing one or more copies of MPMV constitutive RNA transport element (CTE) were used to package similarly modified gene-transfer vectors in the presence or absence of Rev. An inverse correlation between the number of CTE modules and Rev dependency was noted for vector stock production. While packaging systems containing multiple CTEs were resistant to exogenously expressed Rev M10, the titers of vectors encoding Rev M10 were nevertheless reduced in comparison to vectors encoding only green fluorescent protein (GFP). In contrast, a gene transfer vector encoding the Rev M10 transgene and containing both RNA transport elements exhibited almost no loss in titer in comparison to a corresponding vector encoding only GFP. The optimized Rev-independent gene delivery system was used for delivery of Rev M10 transgene into T-lymphocytes. Upon challenge in single round infection assays with HIV-1, the modified T-cells produced fewer virus particles than control cells expressing GFP. This Rev-free packaging system may prove useful for targeting the Rev-RRE-Crm1 nucleocytoplasmic RNA transport pathway for inhibiting HIV replication.  相似文献   

14.
Kong W  Tian C  Liu B  Yu XF 《Journal of virology》2002,76(22):11434-11439
Efficient expression of the human immunodeficiency virus type 1 (HIV-1) structural gene products Gag, Pol, and Env involves the regulation by viral Rev and Rev-responsive elements (RRE). Removal of multiple inhibitory sequences (INS) in the coding regions of these structural genes or modification of the codon usage patterns of HIV-1 genes to those used by highly expressed human genes has been found to significantly increase HIV-1 structural protein expression in the absence of Rev and RRE. In this study, we show that efficient and stable expression of the HIV-1 structural gene products Gag and Env could be achieved by transfection with a noncytopathic Sindbis virus expression vector by using HIV-1 sequences from primary isolates without any sequence modification. Stable expression of these Gag and Env proteins was observed for more than 12 months. The fact that the Sindbis virus expression vector replicates its RNA only in the cytoplasm of the transfected cells and the fact that the lack of expression of HIV-1 Gag by the DNA vector containing unmodified HIV-1 gag sequences was associated with a lack of detectable cytoplasmic gag RNA suggest that a major blockage in the expression of HIV-1 structural proteins in the absence of Rev/RRE is caused by inefficient accumulation of mRNA in the cytoplasm. Efficient long-term expression of structural proteins of diverse HIV-1 strains by the noncytopathic Sindbis virus expression system may be a useful tool for functional study of HIV-1 gene products and vaccine research.  相似文献   

15.
A nuclear role for the Fragile X mental retardation protein.   总被引:16,自引:0,他引:16       下载免费PDF全文
Fragile X syndrome results from lack of expression of a functional form of Fragile X mental retardation protein (FMRP), a cytoplasmic RNA-binding protein of uncertain function. Here, we report that FMRP contains a nuclear export signal (NES) that is similar to the NES recently identified in the Rev regulatory protein of human immunodeficiency virus type 1 (HIV-1). Mutation of this FMRP NES results in mis-localization of FMRP to the cell nucleus. The FMRP NES is encoded within exon 14 of the FMR1 gene, thus explaining the aberrant nuclear localization of a natural isoform of FMRP that lacks this exon. The NES of FMRP can substitute fully for the Rev NES in mediating Rev-dependent nuclear RNA export and specifically binds a nucleoporin-like cellular cofactor that has been shown to mediate Rev NES function. Together, these findings demonstrate that the normal function of FMRP involves entry into the nucleus followed by export via a pathway that is identical to the one utilized by HIV-1 Rev. In addition, these data raise the possibility that FMRP could play a role in mediating the nuclear export of its currently undefined cellular RNA target(s).  相似文献   

16.
A common feature of gene expression in all retroviruses is that unspliced, intron-containing RNA is exported to the cytoplasm despite the fact that cellular RNAs which contain introns are usually restricted to the nucleus. In complex retroviruses, the export of intron-containing RNA is mediated by specific viral regulatory proteins (e.g., human immunodeficiency virus type 1 [HIV-1] Rev) that bind to elements in the viral RNA. However, simpler retroviruses do not encode such regulatory proteins. Here we show that the genome of the simpler retrovirus Mason-Pfizer monkey virus (MPMV) contains an element that serves as an autonomous nuclear export signal for intron-containing RNA. This element is essential for MPMV replication; however, its function can be complemented by HIV-1 Rev and the Rev-responsive element. The element can also facilitate the export of cellular intron-containing RNA. These results suggest that the MPMV element mimics cellular RNA transport signals and mediates RNA export through interaction with endogenous cellular factors.  相似文献   

17.
The Rev transactivator protein of human immunodeficiency virus type 1 (HIV-1) is required for protein expression from the HIV-1 RNAs which contain a binding site for the Rev protein, termed the Rev-responsive element (RRE). This transactivator acts both at the level of splicing/transport of nuclear RNAs and at the level of translation of cytoplasmic RNAs. We used a monoclonal antibody specific for the HIV-1 Rev protein to immunoprecipitate cellular extracts from HIV-1-infected and -transfected cells. High levels of specific binding of wild-type Rev to the RRE-containing RNAs were found in cytoplasmic, but not nuclear, extracts from these cells. A Rev mutant which lacked both nuclear and cytoplasmic Rev function but retained RNA binding in vivo was generated. This binding was detectable with both nuclear and cytoplasmic extracts. These results verify the existence of direct binding of Rev to HIV-1 RNAs in vivo and conclusively prove that binding of Rev is not sufficient for nuclear or cytoplasmic Rev function. The results also support a direct role for Rev in the nuclear export and translation of HIV-1 RNAs.  相似文献   

18.
19.
Nuclear export of the incompletely spliced mRNAs encoded by several complex retroviruses, including human immunodeficiency virus type 1 (HIV-1), is dependent on a virally encoded adapter protein, termed Rev in HIV-1, that directly binds both to a cis-acting viral RNA target site and to the cellular Crm1 export factor. Human endogenous retrovirus K, a family of ancient endogenous retroviruses that is not related to the exogenous retrovirus HIV-1, was recently shown to also encode a Crm1-dependent nuclear RNA export factor, termed K-Rev. Although HIV-1 Rev and K-Rev display little sequence identity, they share the ability not only to bind to Crm1 and to RNA but also to form homomultimers and shuttle between nucleus and cytoplasm. We have used mutational analysis to identify sequences in the 105-amino-acid K-Rev protein required for each of these distinct biological activities. While mutations in K-Rev that inactivate any one of these properties also blocked K-Rev-dependent nuclear RNA export, several K-Rev mutants were comparable to wild type when assayed for any of these individual activities yet nevertheless defective for RNA export. Although several nonfunctional K-Rev mutants acted as dominant negative inhibitors of K-Rev-, but not HIV-1 Rev-, dependent RNA export, these were not defined by their inability to bind to Crm1, as is seen with HIV-1 Rev. In total, this analysis suggests a functional architecture for K-Rev that is similar to, but distinct from, that described for HIV-1 Rev and raises the possibility that viral RNA export mediated by the approximately 25 million-year-old K-Rev protein may require an additional cellular cofactor that is not required for HIV-1 Rev function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号