首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Macromolecule synthesis in yeast spheroplasts   总被引:27,自引:16,他引:11  
Conditions have been established for the preparation of spheroplasts of Saccharomyces cerevisiae which are able to increase their net content of protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA), several-fold upon incubation in a medium stabilized with 1 m sorbitol. The rate of RNA and protein synthesis in the spheroplasts is nearly the same as that occurring in whole cells incubated under the same conditions; DNA synthesis occurs at about half the whole cell rate. The spheroplasts synthesize transfer RNA and ribosomal RNA. The newly synthesized ribosomal RNA is incorporated into ribosomes and polysomes. The polysomes are the site of protein synthesis in these spheroplasts. Greater than 90% of the total RNA can be solubilized by treatment of the spheroplasts with sodium dodecyl sulfate or sodium deoxycholate. These spheroplast preparations appear to be a useful subject for the study of RNA metabolism in yeast.  相似文献   

2.
Disrupted spheroplast preparations of Pseudomonas schuylkilliensis strain P contained fragments of cytoplasmic membrane and approximately 82% of the total cellular phospholipid. The protoplast-bursting factor (PB-factor), partially purified from pig pancreas, and a heat-treated pancreatic lipase fraction both inhibited ribonucleic acid (RNA) synthesis by disrupted spheroplasts but did not inhibit or only slightly inhibited RNA synthesis by intact cells or intact spheroplasts. The PB-factor preparation and the heat-treated pancreatic lipase fraction catalyzed partial (15 to 50%) deacylation of diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine in disrupted spheroplasts but not in intact spheroplasts. Phospholipase A activity was demonstrated in the PB-factor preparation by use of isolated phospholipids as substrates. Treatment of disrupted spheroplasts with the PB-factor preparation caused a 70% inhibition in oxidative phosphorylation and RNA synthesis, but had little effect on electron transport. Addition of adenosine-5'-triphosphate or adenosine-5'-diphosphate and a mixture of ribonucleosides after treatment with the PB-factor preparation partially restored oxidative phosphorylation but did not relieve the inhibition in RNA synthesis. The most reasonable explanation for the latter observation appears to be that the concentrations of newly synthesized nucleotides retained by the preparations with partially deacylated membrane phospholipids were insufficient to permit the synthesis of RNA.  相似文献   

3.
Osmotically shocked spheroplasts obtained from Pseudomonas schuylkilliensis strain P contained about 54, 32, 28, and 82% of the total cellular protein, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and phospholipid, respectively. This preparation was capable of incorporating (32)P-orthophosphate into RNA and DNA, (3)H-adenosine or (3)H-uridine into RNA, and (3)H-leucine or (14)C-phenylalanine into protein. These activities were not found in the cytoplasmic fraction which contained most of the glucose-6-phosphate dehydrogenase activity. The synthesis of RNA by intact and disrupted spheroplast preparations was sensitive to actinomycin D, chromomycin A(3), streptovaricin, rifampin, Lubrol W, Triton X-100, and sodium deoxycholate, whereas RNA synthesis by intact cells was insensitive to these agents. Ethylenediaminetetraacetic acid, porcine pancreatic lipase, the protoplast-bursting factor, high concentrations of salts, and washing the preparation inhibited the synthesis of RNA by disrupted spheroplasts but had little or no effect on intact spheroplasts. Most of the newly synthesized RNA made by disrupted spheroplasts had the characteristics of messenger RNA. The DNA present in this preparation functioned as a template for RNA synthesis; continued protein synthesis was dependent on concomitant RNA synthesis. An unusual feature of the preparation was the finding that the synthesis of macromolecules was completely dependent on oxidative phosphorylation.  相似文献   

4.
Spheroplasts were prepared from Aspergillus parasiticus NRRL 3240 using β-glucuronidase from Helix pomatia. They were osmotically fragile spherical structures which lysed when suspended in hypotonic buffers. Purity of the preparation was confirmed by phase-contrast microscopy. Maximal conversion of mycelia to spheroplasts was achieved with 48 and 72 h old cultures. Spheroplasts were metabolically active as indicated by the incorporation of labelled thymidine, uridine and leucine into DNA, RNA and proteins, respectively. A significant incorporation of [methyl-3H] thymidine into trichloroacetic acid-insoluble material suggested the presence of thymidine kinase in this organism. Spheroplasts and lysates demonstrated the ability to incorporate labelled acetate into aflatoxins. Maximum incorporation was observed in those prepared from 96 h old cultures. Lysates were more efficient in de novo aflatoxin synthesis as compared to intact mycelia and spheroplasts.  相似文献   

5.
Zones of membrane adhesion in the cryofixed envelope of Escherichia coli   总被引:7,自引:0,他引:7  
The envelopes of Escherichia coli B and E. coli K29 were examined using cryofixation and freeze substitution. Emphasis was directed toward the question whether membrane adhesion zones (which connect inner membrane (IM) and outer membrane (OM) after plasmolysis in 10-20% sucrose) can be visualized with the use of cryotechniques. Plasmolysis in 10-20% sucrose was observed to have no effect on cell viability. We found that simple plunge-freezing methods preserve adhesion sites, whereas these sites were not observed after impact-freezing. Also, plasmolysis "bays," visible in light microscopic preparations of living cells, were seen to be maintained intact after plunge-freezing. Employment of photocrosslinking with UV-flashes before or after plasmolysis showed a significant increase in the number of adhesion areas compared to noncrosslinked specimens. To control the contact speed of the specimen during immersion into the cryogen, a hollow rotor was constructed in which the cryogenic liquid is moving at desired high speeds. Adhesion sites presented themselves in the plasmolyzed cell as sites of close contact of the outer and inner membrane, an arrangement that would leave very limited space for peptidoglycan layers at the contact site of the two membranes. Adhesion sites may occur either as single, isolated sites or within stretches of IM/OM apposition where they appear to function as "spot welds" between the two membranes. Exposure of cells to sucrose concentrations of 35% caused rupture of adhesions with cytoplasmic fragments remaining attached to the envelope. The cryofixation procedures described here do not presently yield the number of membrane adhesions obtainable with conventional aldehyde fixation. However, since the combination of millisecond photocrosslinking and cryofixation of plasmolyzed cells resulted in a higher membrane stabilization and in an increase of the number of adhesion sites, this combination appears to be a useful tool for the analysis of sensitive membrane structures.  相似文献   

6.
This report describes the ultrastructural features of Pseudomonas aeruginosa after freeze-etching of intact cells and enzymatically prepared spheroplasts. Freeze-etching of intact cells revealed two convex layers of the cell wall and particles within the hydrophobic interior of the cell membrane. Areas of the membrane free of particles were sometimes elevated in the form of rather large dome-shaped structures. Spheroplasts were formed from intact cells by the addition of trypsin to a reaction mixture of lysozyme and ethylenediaminetetraacetic acid. Spheroplasts contained the outer lipoid layer of the cell wall. It was possible to observe this cell wall layer in freeze-etch preparations of spheroplasts. The spheroplast membrane like that of intact cells was cleaved along a central plane to expose particles and particle-free areas.  相似文献   

7.
Plasmolysis bays, induced in Escherichia coli by hypertonic treatment, are flanked by zones of adhesion between the plasma membrane and the cell wall. To test the proposition of Cook et al. (W. R. Cook, F. Joseleau-Petit, T. J. MacAlister, and L. I. Rothfield, Proc. Natl. Acad. Sci. USA 84:7144-7148, 1987) that these zones, called periseptal annuli, play a role in determining the division site, we analyzed the positions of these zones by phase-contrast and electron microscopy. In situ treatment of cells grown in agar showed that the youngest cell pole was the most susceptible to plasmolysis, whereas the constriction site was resistant. Lateral bays occurred only at some distance from a polar bay or a resistant constriction site. Orienting cells with their most prominently plasmolyzed polar bay in one direction showed that the lateral bays were always displaced away from the polar bay at about half the distance to the other cell pole. If no poles were plasmolyzed, lateral bays occurred either in the centers of nonconstricting cells or at the 1/4 or 3/4 position of cell length in constricting cells. The asymmetric positions of lateral plasmolysis bays, caused by their abrupt displacement in the presence of polar bays or constriction sites, does not confirm the periseptal annulus model (Cook et al.), which predicts a gradual and symmetric change in the position of lateral bays with increasing cell length. Our analysis indicates that plasmolysis bays have no relation to the development and positioning of the future division site.  相似文献   

8.
The effects on the stringent control of ribosomal ribonculeic acid synthesis of the removal of cell wall, cold-shock treatment of cells, LiCl treatment of toluene-treated cells, and hypotonic treatment of spheroplasts were examined using Escherichia coli rel+ cells. Neither the removal of cell wall with penicillin or lysozyme nor the cold-shock treatment of the cells had an effect on the stringent control. The control mechanism, however, disappeared after the LiCl treatment of the toluene-treated cells, with the release of some protein component(s), possibly from the cytoplasmic membrane. The hypotonic and other treatments of spheroplasts, which disrupt the cytoplasmic membrane, also led to the abolishment of the control mechanism. These results suggested that the operation of the stringent control of ribosomal ribonucleic acid synthesis requires the cytoplasmic membrane, in which some proteins labile with LiCl treatment are embedded.  相似文献   

9.
Phospholipid synthesis activity and plasma membrane growth have been studied in the Saccharomyces cerevisiae temperature-sensitive, secretion-defective mutants isolated by Novick and Schekman (Proc. Natl. Acad. Sci. U.S.A. 76:1858-1862, 1979; Novick et al., Cell 21:205-215, 1980). The mutants, sec1 through sec23, do not grow at 37 degrees C and exhibit lower rates of phospholipid synthesis than does the wild-type strain X2180. None of the mutants exhibits a decline in lipid synthesis rapid enough to explain secretion failure. Plasma membrane growth was assessed indirectly by examining the osmotic sensitivity of spheroplasts derived from cultures transferred from 24 to 37 degrees C. Spheroplasts from the normal-growing strain X2180 exhibited a small rapid increase in osmotic sensitivity and stabilized at a more sensitive state. Spheroplasts from the sec mutants exposed to the same temperature shift exhibited progressively increasing osmotic sensitivity. Cycloheximide treatment prevented progressive increases in osmotic fragility. These data are compatible with the hypothesis that plasma membrane expansion is restricted in the sec mutants. During incubation at 37 degrees C, the accumulation of intracellular materials within the no-longer expanding plasma membrane exerts osmotic stress on the membrane, increasing with time. The gene products defective in Novick and Schekman's sec mutants appear to be required for both extracellular protein secretion and plasma membrane growth in yeast cells.  相似文献   

10.
We have examined yeast cell ghost preparations to assess their value in obtaining plasma membrane proteins. Ghosts prepared by two methods involving stabilization of spheroplast envelopes had similar protein patterns by two-dimensional gel electrophoresis, and approximately 200 proteins were resolved. Spheroplasts were lactoperoxidase iodinated, and recovery of label in ghost preparations was greater than 60%. Spheroplasts appeared to be impermeable to the lactoperoxidase reagents as judged by an examination of two-dimensional gel electrophoretic patterns of ghost proteins that had been iodinated in spheroplasts or in unsealed ghosts. Spheroplasts were also impermeable to pronase proteases. Surface iodination and surface proteolysis allowed us to identify exposed ghost proteins; the major ghost glycoprotein was exposed in spheroplasts.Two-dimensional patterns of ghost proteins were not heavily contaminated (?25% of all proteins) by proteins present in soluble or promitochondrial fractions, and estimates of surface label and total cell protein recovery suggested that the ghost fraction represents a cell envelope enrichment of 8–10 fold over whole cells.Resolution of ghost proteins by two-dimensional gel electrophoresis appears to be a powerful aid toward identifying membrane proteins.  相似文献   

11.
Spheroplasts were disrupted with 0.2% Brij 58 and the separation of intact cells, spheroplasts, disrupted spheroplasts, fragmented membrane, and supernatant was performed on a linear 40~55% sucrose gradient. About half an amount of nucleic acid components was distributed in disrupted spheroplast fractions, while only a small amount of protein components was found in these fractions.

DNA polymerase in the fragmented membrane fraction incorporated 3H-TTP more rapidly than that in the supernatant fraction for the first 5 to 6 min, and then the incorporation rate decreased, while DNA polymerase in the supernatant fraction incorporated 3H-TTP linearly up to 20 min when native DNA was used as a primer. The former required native DNA as a primer and showed little activity towards denatured DNA, while the latter incorporated 3H-TTP at a similar rate to both the primer DNA’s.

DNA polymerase of the fragmented membrane fraction synthesized various sizes of DNA from short to a size of primer when native DNA was used as a primer, while when denatured DNA was used, products were only short. DNA polymerase of the supernatant fraction synthesized various sizes of DNA when both native and denatured DNA’s were used as primers.  相似文献   

12.
13.
Kre1p, the plasma membrane receptor for the yeast K1 viral toxin   总被引:6,自引:0,他引:6  
Breinig F  Tipper DJ  Schmitt MJ 《Cell》2002,108(3):395-405
Saccharomyces cerevisiae K1 killer strains are infected by the M1 double-stranded RNA virus encoding a secreted protein toxin that kills sensitive cells by disrupting cytoplasmic membrane function. Toxin binding to spheroplasts is mediated by Kre1p, a cell wall protein initially attached to the plasma membrane by its C-terminal GPI anchor. Kre1p binds toxin directly. Both cells and spheroplasts of Deltakre1 mutants are completely toxin resistant; binding to cell walls and spheroplasts is reduced to 10% and < 0.5%, respectively. Expression of K28-Kre1p, an inactive C-terminal fragment of Kre1p retaining its toxin affinity and membrane anchor, fully restored toxin binding and sensitivity to spheroplasts, while intact cells remained resistant. Kre1p is apparently the toxin membrane receptor required for subsequent lethal ion channel formation.  相似文献   

14.
The cellular localization of enzymes in Diplococcus pneumoniae was examined by fractionation of spheroplasts. A deoxyribonuclease implicated in the entry of deoxyribonucleic acid (DNA) into the cell during genetic transformation was located in the cell membrane. This enzyme, the major endonuclease of the cell (endonuclease I), which is necessary for the conversion of donor DNA to single strands inside the cell and oligonucleotides outside, thus could act at the cell surface. Another enzyme, the cell wall lysin (autolysin), was also found in the membrane fraction. Other enzymes, including amylomaltase, two exonucleases, and adenosine triphosphate-dependent deoxyribonuclease, and a restriction type endonuclease, were located in the cytosol within the cell. None of the enzymes examined were predominantly periplasmic in location. Spheroplasts were obtained spontaneously on incubation of pneumococcal cells in concentrated sugar solutions. The autolytic enzyme appears to be involved in this process. Cells that were physiologically competent to take up DNA formed osmotically sensitive spheroplasts two to three times faster than cells that were not in the competent state. Although some genetically incompetent mutants also formed spheroplasts more slowly, other such mutants formed them at the faster rate.  相似文献   

15.
An electron microscopy study has been made of the effects of dissolution of the plasma membrane of Escherichia coli with sodium dodecyl sulfate (SDS) on the organization of the nucleoplasm and the cytoplasm. The alterations observed in time course experiments were related to absorbance changes and to release of macromolecules from the cells. As the cells became plasmolyzed, under the conditions used, the first visible effect of SDS was a collapse of the plasmolysis spaces. This was accompanied by a displacement of the nuclear material which then appeared in broad contact with the redeployed plasma membrane. This initial displacement of nuclear material to the cell border may indicate an association between the nucleoplasm and the plasma membrane. Upon further dissolution of the plasma membrane, the nuclear material receded from the cell margin and contracted into an axial filament. Meanwhile, the cytoplasm dissociated into an amorphous, Pronase-sensitive component and an electron-opaque, granular one sensitive to ribonuclease. The latter represented one continuous area of ribosomal structures surrounding the nucleoplasm, an organization which did not occur when the cells were inhibited with rifamycin before SDS treatment. During prolonged SDS interaction, approximately 65% of the cellular protein, 25% of the ribonucleic acid and 40% of the deoxyribonucleic acid were released from the cells concomitant with the disappearance of the amorphous cytoplasmic part, expansion of the ribosomal aggregate, and rearrangement of the nuclear material at the cell periphery. The observations support the contention that all ribosomal structures bear a direct relationship with the nucleoplasm.  相似文献   

16.
Fusion of bacterial spheroplasts by electric fields   总被引:4,自引:0,他引:4  
Spheroplasts of Escherichia coli or Salmonella typhimurium were found to fuse in an electric field. We employed the fusion method developed by Zimmermann and Scheurich (1981): Close membrane contact between cells is established by dielectrophoresis (formation of chains of cells by an a.c. field), then membrane fusion is induced by the application of short pulses of direct current. Under optimum conditions the fusion yield was routinely 90%. Fusable spheroplasts were obtained by first growing filamentous bacteria in the presence of cephalexin, then converting these to spheroplasts by the use of lysozyme. The fusion products were viable and regenerated to the regular bacterial form. Fusion of genetically different spheroplasts resulted in strains of bacteria possessing a combination of genetic markers. Fusion could not be achieved with spheroplasts obtained by growing the cells in the presence of penicillin or by using lysozyme on bacteria of usual size.  相似文献   

17.
We have examined yeast cell ghost preparations to assess their value in obtaining plasma membrane proteins. Ghosts prepared by two methods involving stabilization of spheroplast envelopes had similar protein patterns by two-dimensional gel electrophoresis, and approximately 200 proteins were resolved. Spheroplasts were lactoperoxidase iodinated, and recovery of label in ghost preparations was greater than 60%. Spheroplasts appeared to be impermeable to the lactoperoxidase reagents as judged by an examination of two-dimensional gel electrophoretic patterns of ghost proteins that had been iodinated in spheroplasts or in unsealed ghosts. Spheroplasts were also impermeable to pronase proteases. Surface iodination and surface proteolysis allowed us to identify exposed ghost proteins; the major ghost glycoprotein was exposed in spheroplasts. Two-dimensional patterns of ghost proteins were not heavily contaminated (less than or equal to 25% of all proteins) by proteins present in soluble or promitochondrial fractions, and estimates of surface label and total cell protein recovery suggested that the ghost fraction represents a cell envelope enrichment of 8--10 fold over whole cells. Resolution of ghost proteins by two-dimensional gel electrophoresis appears to be a powerful aid toward identifying membrane proteins.  相似文献   

18.
The plasmolytic response of Bacillus licheniformis 749/C cells to the increasing osmolarity of the surrounding medium was quantitated with stereological techniques. Plasmolysis was defined as the area (in square micrometers) of the inside surface of the bacterial wall not in association with bacterial membrane per unit volume (in cubic micrometers) of bacteria. This plasmolyzed surface area was zero when the cells were suspended in a concentration of sucrose solution lower than 0.5 M, but increased linearly when the sucrose molarity rose above 0.5 M, reaching a plateau value of 3.61 micrometers2/micrometers3 in 2 M sucrose. In contrast, when the bacterial cells were treated with lysozyme plasmolysis increased abruptly from 0.06 micrometers2/micrometers3 in 0.75 M sucrose to 4.09 micrometers2/micrometers3 in 1 M sucrose. When the time of exposure was prolonged, the degree of plasmolysis increased gradually for the duration of the experiment (30 min) after exposure to 1 M sucrose without lysozyme, whereas with lysozyme plasmolysis reached a maximum (4.09 micrograms2/micrometers3) in 2 to 5 min. The examination of ultrastructure showed that the protoplast bodies of lysozyme-treated cells in 1 M sucrose and untreated cells in 2 M sucrose are maximally retracted from the intact wall of the bacteria; hardly any retraction of protoplasts could be seen for untreated cells in 1 M sucrose. The data suggest that the B. licheniformis cells are isoosmotic to 800 to 1,100 mosM solutions, but are able to withstand much greater osmotic pressure with no signs of plasmolysis because the cell wall and the plasma membrane are held in close association, perhaps by a covalent bond. It is likely that lysozyme weakens this bond by degradation of the peptidoglycan layer. Cellular autolysis also weakens this wall-membrane association.  相似文献   

19.
Ultrastructural studies on oat coleoptile parenchyma cells (Avenasativa L. cv. Victory) reveal that severe plasmolysis eitherbreaks plasmodesmatal connections or leaves the protoplastsstill connected via strands of cytoplasm (Hechtian strands).Plasmolysis also induces the formation of callose around theplasmodesmata. The callose remains for several hours after recoveryof the cells to full turgor. Immediately following recovery of turgor, intercellular electricalcoupling cannot be detected. However, during the next 6 h, somedegree of coupling is restored. These results indicate that,while plasmolysis does not necessarily break all plasmodesmatalconnections, the treatment probably does disrupt them sufficientlyto interfere, at least temporarily, with symplastic transport.  相似文献   

20.
Diphtheria toxin kills spheroplasts of Saccharomyces cerevisiae but not the intact yeast cells. After 2 h of exposure to ca. 10(-7) M toxin, less than 1% of spheroplasts were able to regenerate into intact cells. The same high levels of toxin inhibited the rate of protein synthesis by more than 90% within 1 h, whereas RNA and DNA synthesis were not inhibited until 4 h or exposure. Both killing and protein synthesis inhibition were dependent on toxin concentration. The nature of the toxin-cell interaction was also studied by using fragments of intact toxin and mutant toxin proteins. Neither toxin fragment A nor CRM45 nor CRM197 affected spheroplasts, but CRM197 and ATP prevented the inhibitory action of intact toxin. These results suggest that toxin acts on S. cerevisiae spheroplasts in much the same manner as it acts on sensitive mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号