首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dependence of the flux in the alcohol-degrading pathway on the activity of alcohol dehydrogenase was investigated in Drosophila larvae. Third-instar larvae were supplied with [2-13C]ethanol as a dietary carbon source. Specific carbon enrichments in de novo synthesized fatty acids were determined in vitro by means of 13C nuclear magnetic resonance spectroscopy. Carbon fluxes deduced from these enrichment patterns were correlated with the in vitro alcohol dehydrogenase activities in three different Adh genotypes in seven different strains. The flux control coefficient for alcohol dehydrogenase was shown to be approximately 1.0. This indicates that the alcohol dehydrogenase gene-enzyme system in Drosophila larvae can be a major target of natural selection.  相似文献   

2.
An overview of published approaches for the metabolic flux control analysis of branch points revealed that often not all fundamental constraints on the flux control coefficients have been taken into account. This has led to contradictory statements in literature on the minimum number of large perturbation experiments required to estimate the complete set of flux control coefficients C(J) for a metabolic branch point. An improved calculation procedure, based on approximate Lin-log reaction kinetics, is proposed, providing explicit analytical solutions of steady state fluxes and metabolite concentrations as a function of large changes in enzyme levels. The obtained solutions allow direct calculation of elasticity ratios from experimental data and subsequently all C(J)-values from the unique relation between elasticity ratio's and flux control coefficients. This procedure ensures that the obtained C(J)-values satisfy all fundamental constraints. From these it follows that for a three enzyme branch point only one characterised or two uncharacterised large flux perturbations are sufficient to obtain all C(J)- values. The improved calculation procedure is illustrated with four experimental cases.  相似文献   

3.
Differing views have been given in the literature as to whether the presence in a pathway of an enzyme at a concentration comparable to that of its substrate affects the values of control coefficients and the theorems of metabolic control analysis. Here we argue in favour of one of those views: that there is no effect unless the enzyme sequesters a substrate that contains a conserved moiety. In this particular case, we derive both a general criterion for estimating whether such an effect will be of a significant magnitude, and equations for determining the changes in the flux control coefficients. The nature of the phenomenom and the application of the equations are illustrated with a numerical simulation.  相似文献   

4.
5.
6.

Synechocystis sp. PCC 6803 is an attractive host for bio-ethanol production due to its ability to directly convert atmospheric carbon dioxide into ethanol using photosystems. To enhance ethanol production in Synechocystis sp. PCC 6803, metabolic engineering was performed based on in silico simulations, using the genome-scale metabolic model. Comprehensive reaction knockout simulations by flux balance analysis predicted that the knockout of NAD(P)H dehydrogenase enhanced ethanol production under photoautotrophic conditions, where ammonium is the nitrogen source. This deletion inhibits the re-oxidation of NAD(P)H, which is generated by ferredoxin-NADP+ reductase and imposes re-oxidation in the ethanol synthesis pathway. The effect of deleting the ndhF1 gene, which encodes NADH dehydrogenase subunit 5, on ethanol production was experimentally evaluated using ethanol-producing strains of Synechocystis sp. PCC 6803. The ethanol titer of the ethanol-producing ∆ndhF1 strain increased by 145%, compared with that of the control strain.

  相似文献   

7.
This paper illustrates a method to calculate the sensitivities of control coefficients to the elasticities which determine their values and it is shown that these sensitivities are systemic properties. We show, both theoretically and with a practical example, how they can be used to investigate: (a) the relative importance of a particular elasticity in the determination of the value of a control coefficient; (b) the effect of experimental error on the values of the control coefficients and (c) the construction of confidence limits around the values of the control coefficients.  相似文献   

8.
An extended kinetic model for the first two steps of the penicillin biosynthetic pathway in Penicillium chrysogenum is set up. It includes the formation and reduction of the dimer bis--(l--aminoadipyl)-l-cysteinyl-d-valine (bisACV) from the first pathway intermediate lld-ACV and their parallel inhibition of the enzyme ACV synthetase (ACVS). The kinetic model is based on Michaelis-Menten type kinetics, with non-competitive inhibition of the ACVS by both lld-ACV and bisACV, and competitive inhibition of the isopenicillin N synthetase (IPNS) by glutathione. The inhibition constant of lld-ACV, KACV is determined to be 0.54 mm. With the kinetic model metabolic control analysis is performed to identify the distribution of rate-control in the pathway at all ratios of lld-ACV:bisACV. It is concluded that the flux control totally resides at the IPNS. This is a result of the regulation of the ACVS by both the lld-ACV and bisACV demanding a higher flux through the IPNS enzyme to alleviate their inhibition. The measurement of an intracellular ratio of lld-ACV:bisACV to be in the range of 1–2 moles per moles emphasises the importance of a fast conversion of lld-ACV to IPN, and accumulation of lld-ACV above the Km-value of the IPNS should therefore be avoided.  相似文献   

9.
Theory and experience in metabolic engineering both show that metabolism operates at the network level. In plants, this complexity is compounded by a high degree of compartmentation and the synthesis of a very wide array of secondary metabolic products. A further challenge to understanding and predicting plant metabolic function is posed by our ignorance about the structure of metabolic networks even in well-studied systems. Metabolic flux analysis (MFA) provides tools to measure and model the functioning of metabolism, and is making significant contributions to coping with their complexity.
This review gives an overview of different MFA approaches, the measurements required to implement them and the information they yield. The application of MFA methods to plant systems is then illustrated by several examples from the recent literature. Next, the challenges that plant metabolism poses for MFA are discussed together with ways that these can be addressed. Lastly, new developments in MFA are described that can be expected to improve the range and reliability of plant MFA in the coming years.  相似文献   

10.
Metabolic flux analysis of cultured hepatocytes exposed to plasma   总被引:3,自引:0,他引:3  
Hepatic metabolism can be investigated using metabolic flux analysis (MFA), which provides a comprehensive overview of the intracellular metabolic flux distribution. The characterization of intermediary metabolism in hepatocytes is important for all biotechnological applications involving liver cells, including the development of bioartificial liver (BAL) devices. During BAL operation, hepatocytes are exposed to plasma or blood from the patient, at which time they are prone to accumulate intracellular lipids and exhibit poor liver-specific functions. In a prior study, we found that preconditioning the primary rat hepatocytes in culture medium containing physiological levels of insulin, as opposed to the typical supraphysiological levels found in standard hepatocyte culture media, reduced lipid accumulation during subsequent plasma exposure. Furthermore, supplementing the plasma with amino acids restored hepatospecific functions. In the current study, we used MFA to quantify the changes in intracellular pathway fluxes of primary rat hepatocytes in response to low-insulin preconditioning and amino acid supplementation. We found that culturing hepatocytes in medium containing lower physiological levels of insulin decreased the clearance of glucose and glycerol with a concomitant decrease in glycolysis. These findings are consistent with the general notion that low insulin, especially in the presence of high glucagon levels, downregulates glycolysis in favor of gluconeogenesis in hepatocytes. The MFA model shows that, during subsequent plasma exposure, low-insulin preconditioning upregulated gluconeogenesis, with lactate as the primary precursor in unsupplemented plasma, with a greater contribution from deaminated amino acids in amino acid-supplemented plasma. Concomitantly, low-insulin preconditioning increased fatty acid oxidation, an effect that was further enhanced by amino acid supplementation to the plasma. The increase in fatty acid oxidation reduced intracellular triglyceride accumulation. Overall, these findings are consistent with the notion that the insulin level in medium culture presets the metabolic machinery of hepatocytes such that it directly impacts on their metabolic behavior during subsequent plasma culture.  相似文献   

11.
Myocardial hibernation represents an adaptation to sustained ischemia to maintain tissue vitality during severe supply-demand imbalance which is characterized by an increased glucose uptake. To elucidate this adaptive protective mechanism, the regulation of anaerobic glycolysis was investigated using human biopsies. In hibernating myocardium showing an increase in anaerobic glycolytic flux metabolizing exogenous glucose, the adjustment of flux through this pathway was analyzed by flux:metabolite co-responses. By this means, a previously unknown pattern of regulation using multisite modulation was found which largely differs from traditional concepts of metabolic control of the Embden-Meyerhof pathway in normal and diseased myocardium.  相似文献   

12.
A J Birley  P A Couch  A Marson 《Heredity》1981,47(2):185-196
Four characters, ADH activity at 25 degrees, immunologically determined ADH protein level, total protein and body weight were measured upon 72 hour old adult female and male Drosophila melanogaster from 16 highly inbred lines, derived from the laboratory population, "Texas" (established 1966). The highest levels of ADH activity and ADH protein level were observed in the 2 lined homozygous for the AdhF allele. Amongst the 14 AdhS/S lines variation for ADH protein level was associated with genetical variation for ADH activity (r = 0.6). The genetical association between ADH activity or ADH protein level and either body weight or total protein in the 16 inbred lines was not statistically significant. A study of ADH activity, ADH protein and total protein in 8 lines representing all homozygous combinations of chromosomes I, II and III and derived from two inbred AdhS/S lines, chosen for their respective high and low ADH activities, showed that ADH activity was considerably modified by a post-translational event controlled from chromosome III. Total protein was controlled by different chromosomal effects from those controlling ADH activity. Michaelis constants for crude fly extracts of the two AdhF/F and the above two AdhS/S lines showed clear differences in affinity for isopropanol.  相似文献   

13.
14.
15.
Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis.  相似文献   

16.
Metabolic flux analysis using carbon labeling experiments (CLEs) is an important tool in metabolic engineering where the intracellular fluxes have to be computed from the measured extracellular fluxes and the partially measured distribution of 13C labeling within the intracellular metabolite pools. The relation between unknown fluxes and measurements is described by an isotopomer labeling system (ILS) (see Part I [Math. Biosci. 169 (2001) 173]). Part II deals with the structural flux identifiability of measured ILSs in the steady state. The central question is whether the measured data contains sufficient information to determine the unknown intracellular fluxes. This question has to be decided a priori, i.e. before the CLE is carried out. In structural identifiability analysis the measurements are assumed to be noise-free. A general theory of structural flux identifiability for measured ILSs is presented and several algorithms are developed to solve the identifiability problem. In the particular case of maximal measurement information, a symbolical algorithm is presented that decides the identifiability question by means of linear methods. Several upper bounds of the number of identifiable fluxes are derived, and the influence of the chosen inputs is evaluated. By introducing integer arithmetic this algorithm can even be applied to large networks. For the general case of arbitrary measurement information, identifiability is decided by a local criterion. A new algorithm based on integer arithmetic enables an a priori local identifiability analysis to be performed for networks of arbitrary size. All algorithms have been implemented and flux identifiability is investigated for the network of the central metabolic pathways of a microorganism. Moreover, several small examples are worked out to illustrate the influence of input metabolite labeling and the paradox of information loss due to network simplification.  相似文献   

17.
Metabolic modelling is a useful tool that enables the rational design of metabolic engineering experiments and the study of the unique capabilities of biotechnologically important microorganisms. The extreme abiotic conditions of the Atacama Desert have selected microbial diversity with exceptional characteristics that can be applied in the mining industry for bioleaching processes and for production of specialised metabolites with antimicrobial, antifungal, antiviral, antitumoral, among other activities. In this review we summarise the scientific data available of the use of metabolic modelling and flux analysis to improve the performance of Atacama Desert microorganisms in biotechnological applications.  相似文献   

18.
Metabolic flux analysis and metabolic engineering of microorganisms   总被引:2,自引:0,他引:2  
Recent advances in metabolic flux analysis including genome-scale constraints-based flux analysis and its applications in metabolic engineering are reviewed. Various computational aspects of constraints-based flux analysis including genome-scale stoichiometric models, additional constraints used for the improved accuracy, and several algorithms for identifying the target genes to be manipulated are described. Also, some of the successful applications of metabolic flux analysis in metabolic engineering are reviewed. Finally, we discuss the limitations that need to be overcome to make the results of genome-scale flux analysis more realistically represent the real cell metabolism.  相似文献   

19.
Applications of genetic engineering or metabolic engineering have increased in both academic and industrial institutions. Most current metabolic engineering studies have focused on enzyme levels and on the effect of the amplification, addition, or deletion of a particular pathway. Although it is generally known that cofactors play a major role in the production of different fermentation products, their role has not been thoroughly and systematically studied. It is conceivable that in cofactor-dependent production systems, cofactor availability and the proportion of cofactor in the active form may play an important role in dictating the overall process yield. Hence, the manipulation of these cofactor levels may be crucial in order to further increase production. We have demonstrated that manipulation of cofactors can be achieved by external and genetic means and these manipulations have the potential to be used as an additional tool to achieve desired metabolic goals. We have shown experimentally that the NADH/NAD(+) ratio can be altered by using carbon sources with different oxidation states. We have shown further that the metabolite distribution can be influenced by a change in the NADH/NAD(+) ratio as mediated by the oxidation state of the carbon source used. We have also demonstrated that the total NAD(H/(+)) levels can be increased by the overexpression of the pncB gene. The increase in the total NAD(H/(+)) levels can be achieved even in a complex medium, which is commonly used by most industrial processes. Finally, we have shown that manipulation of the CoA pool/flux can be used to increase the productivity of a model product, isoamyl acetate.  相似文献   

20.
Using the carbon isotope labeling technique, the response of cyanobacterial central carbon metabolism to the change in environmental conditions was investigated. Synechocystis was grown in the heterotrophic and mixotrophic cultures fed with 13C-labeled glucose. The labeling patterns of the amino acids in biomass hydrolysates for both cultures were detected by the two-dimensional 1H-13C correlation nuclear magnetic resonance (2D 1H-13C COSY NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) technique. The in vivo intracellular flux distributions were then quantitated from the labeling measurements and metabolite balances using a parameters fitting approach. From the estimated flux distributions, it was found that the pentose phosphate pathway was the major pathway of glucose catabolism in the heterotrophic culture, while in the mixotrophic culture, the flux of CO2 fixation through the Calvin cycle was about two-fold of the glucose input flux. The relative flux through the phosphoenolpyruvate carboxylase was very high in both cultures, and this reaction represented about 25% of the assimilated CO2 in the mixotrophic culture. More importantly, we found a substantial outflow from the tricarboxylic acid cycle to glycolysis pathway carried by the malic enzyme, demonstrating the operation of a C4 pathway in cyanobacterial cells through the PEP carboxylase and malic enzyme. The estimated flux distributions also revealed that the NADPH synthesis was in excess relative to its requirement, and the excess NADPH might be reoxidized in cyanobacterial respiration to provide the energy for cellular requirement. Moreover, the analyzed result also suggested that the activity of the respiratory electron transport chain in cyanobacterial cells was not inhibited by light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号