首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CO2 applied for Free-Air CO2 Enrichment (FACE) experiments is strongly depleted in 13C and thus provides an opportunity to study C turnover in soil organic matter (SOM) based on its δ 13C value. Simultaneous use of 15N labeled fertilizers allows N turnover to be studied. Various SOM fractionation approaches (fractionation by density, particle size, chemical extractability etc.) have been applied to estimate C and N turnover rates in SOM pools. The thermal stability of SOM coupled with C and N isotopic analyses has never been studied in experiments with FACE. We tested the hypothesis that the mean residence time (MRT) of SOM pools is inversely proportional to its thermal stability. Soil samples from FACE plots under ambient (380 ppm) and elevated CO2 (540 ppm; for 3 years) treatments were analyzed by thermogravimetry coupled with differential scanning calorimetry (TG-DSC). Based on differential weight losses (TG) and energy release or consumption (DSC), five SOM pools were distinguished. Soil samples were heated up to the respective temperature and the remaining soil was analyzed for δ 13C and δ 15N by IRMS. Energy consumption and mass losses in the temperature range 20–200°C were mainly connected with water volatilization. The maximum weight losses occurred from 200–310°C. This pool contained the largest amount of carbon: 61% of the total soil organic carbon in soil under ambient treatment and 63% in soil under elevated CO2, respectively. δ 13C values of SOM pools under elevated CO2 treatment showed an increase from −34.3‰ of the pool decomposed between 20–200°C to −18.1‰ above 480°C. The incorporation of new C and N into SOM pools was not inversely proportional to its thermal stability. SOM pools that decomposed between 20–200 and 200–310°C contained 2 and 3% of the new C, with a MRT of 149 and 92 years, respectively. The pool decomposed between 310–400°C contained the largest proportion of new C (22%), with a MRT of 12 years. The amount of fertilizer-derived N after 2 years of application in ambient and elevated CO2 treatments was not significantly different in SOM pools decomposed up to 480°C having MRT of about 60 years. In contrast, the pool decomposed above 480°C contained only 0.5% of new N, with a MRT of more than 400 years in soils under both treatments. Thus, the separation of SOM based on its thermal stability was not sufficient to reveal pools with contrasting turnover rates of C and N. Responsible Editor: Bernard Nicolardot.  相似文献   

2.
Carbon isotopic composition of soils subjected to C3–C4 vegetation change can be used to estimate C turnover in bulk soil and in soil organic matter (SOM) pools with fast and intermediate turnover rates. We hypothesized that the biological availability of SOM pools is inversely proportional to their thermal stability, so that thermogravimetry can be used to separate SOM pools with contrasting turnover rates. Soil samples from a field plot cultivated for 10.5 years with the perennial C4 plant Miscanthus×gigantheus were analyzed by thermogravimetry coupled with differential scanning calorimetry (DSC). Three SOM fractions were distinguished according to the differential weight losses and exothermic or endothermic reactions measured by DSC. The δ13C and δ15N values of these three fractions obtained by gradual soil heating were measured by IRMS. The weight losses up to 190 °C mainly reflected water evaporation because no significant C and N losses were detected and δ13C and δ15N values of the residual SOM remained unchanged. The δ13C values (−16.4‰) of SOM fraction decomposed between 190 and 390 °C (containing 79% of total soil C) were slightly closer to that of the Miscanthus plant tissues (δ13C = −11.8‰) compared to the δ13C values (−16.8‰) of SOM fraction decomposed above 390 °C containing the residual 21% of SOM. Thus, the C turnover in the thermally labile fraction was faster than that in thermally stable fractions, but the differences were not very strong. Therefore, in this first study combining TG-DSC with isotopic analysis, we conclude that the thermal stability of SOM was not very strongly related to biological availability of SOM fractions. In contrast to δ13C, the δ15N values strongly differed between SOM fractions, suggesting that N turnover in the soil was different from C turnover. More detailed fractionation of SOM by thermal analysis with subsequent isotopic analysis may improve the resolution for δ13C.  相似文献   

3.
Incorporating crop residues and biochar has received increasing attention as tools to mitigate atmospheric carbon dioxide (CO2) emissions and promote soil carbon (C) sequestration. However, direct comparisons between biochar, torrefied biomass, and straw on both labile and recalcitrant soil organic matter (SOM) remain poorly understood. In this study, we explored the impact of biochars produced at different temperatures and torrefied biomass on the simple C substrates (glucose, amino acids), plant residues (Lolium perenne L.), and native SOM breakdown in soil using a 14C labeling approach. Torrefied biomass and biochars produced from wheat straw at four contrasting pyrolysis temperatures (250, 350, 450, and 550 °C) were incorporated into a sandy loam soil and their impact on C turnover compared to an unamended soil or one amended with unprocessed straw. Biochar, torrefied biomass, and straw application induced a shift in the soil microbial community size, activity, and structure with the greatest effects in the straw‐amended soil. In addition, they also resulted in changes in microbial carbon use efficiency (CUE) leading to more substrate C being partitioned into catabolic processes. While overall the biochar, torrefied biomass, and straw addition increased soil respiration, it reduced the turnover rate of the simple C substrates, plant residues, and native SOM and had no appreciable effect on the turnover rate of the microbial biomass. The negative SOM priming was positively correlated with biochar production temperature. We therefore ascribe the increase in soil CO2 efflux to biochar‐derived C rather than that originating from SOM. In conclusion, the SOM priming magnitude is strongly influenced by both the soil organic C quality and the biochar properties. In comparison with straw, biochar has the greatest potential to promote soil C storage. However, straw and torrefied biomass may have other cobenefits which may make them more suitable as a CO2 abatement strategy.  相似文献   

4.
We examined the temperature response of CO2 exchange and soil biogeochemical processes in an Antarctic tundra ecosystem using laboratory incubations of intact tundra cores. The cores were collected from tundra near Anvers Island along the west coast of the Antarctic Peninsula that was dominated by the vascular plants Colobanthus quitensis and Deschampsia antarctica. After the initial 8-week incubation at moderate growth temperatures (12/7°C, day/night), the tundra cores were incubated for another 8 weeks at either a higher (17/12°C) or lower (7/4°C) temperature regime. Temperature responses of CO2 exchange were measured at five temperatures (4, 7, 12, 17, and 27°C) following each incubation and soil leachates were collected biweekly over the second incubation. Daytime net ecosystem CO2 exchange (NEE) per unit core surface area was higher across the five measurement temperatures after the warmer incubation (17/12°C > 7/4°C). Responses of ecosystem respiration (ER) were similar at each measurement temperature irrespective of incubation temperature regimes. ER, expressed on a leaf-area basis, however, was significantly lower following the warmer incubation, suggesting a downregulation of ER. Warmer incubation resulted in a greater specific leaf area and N concentration, and a lower δ13C in live aboveground C. quitensis, but a higher δ13C in D. antarctica, implying species-specific responses to warming. Concentrations of dissolved organic C and N and inorganic N in soil leachates showed that short-term temperature changes had no noticeable effect on soil biogeochemical processes. The results suggest that downregulation of ER, together with plant species differences in leaf-area production and N use, can play a crucial role in constraining the C-cycle response of Antarctic tundra ecosystems to warming.  相似文献   

5.
Rates of soil respiration (CO2 effluxes), subsurface pore gas CO2/O2 concentrations, soil temperature and soil water content were measured for 15 months in two temperate and contrasting Danish forest ecosystems: beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Soil CO2 effluxes showed a distinct seasonal trend in the range of 0.48–3.3 μmol CO2 m−2 s−1 for beech and 0.50–2.92 μmol CO2 m−2 s−1 for spruce and were well-correlated with near-surface soil temperatures. The soil organic C-stock (upper 1 m including the O-horizon) was higher in the spruce stand (184±23 Mg C ha−1) compared to the beech stand (93±19 Mg C ha−1) and resulted in a faster turnover time as calculated by mass/flux in soil beneath the beech stand (28 years) compared to spruce stand (60 years). Observed soil CO2 concentrations and effluxes were simulated using a Fickian diffusion-reaction model based on vertical CO2 production rates and soil diffusivity. Temporal trends were simulated on the basis of observed trends in the distribution of soil water, temperature, and live roots as well as temperature and water content sensitivity functions. These functions were established based on controlled laboratory incubation experiments. The model was successfully validated against observed soil CO2 effluxes and concentrations and revealed that temporal trends generally could be linked to variations in subsurface CO2 production rates and diffusion over time and with depths. However, periods with exceptionally high CO2 effluxes (> 20 μmol CO2 m−2 s−1) were noted in March 2000 in relation to drying after heavy rain and after the removal of snow from collars. Both cases were considered non-steady state and could not be simulated.  相似文献   

6.
Carbon cycling responses of ecosystems to global warming will likely be stronger in cold ecosystems where many processes are temperature‐limited. Predicting these effects is difficult because air and soil temperatures will not change in concert, and will affect above and belowground processes differently. We disentangled above and belowground temperature effects on plant C allocation and deposition of plant C in soils by independently manipulating air and soil temperatures in microcosms planted with either Leucanthemopsis alpina or Pinus mugo seedlings. Daily average temperatures of 4 or 9°C were applied to shoots and independently to roots, and plants pulse‐labelled with 14CO2. We traced soil CO2 and 14CO2 evolution for 4 days, after which microcosms were destructively harvested and 14C quantified in plant and soil fractions. In microcosms with L. alpina, net 14C uptake was higher at 9°C than at 4°C soil temperature, and this difference was independent of air temperature. In warmer soils, more C was allocated to roots at greater soil depth, with no effect of air temperature. In P. mugo microcosms, assimilate partitioning to roots increased with air temperature, but only when soils were at 9°C. Higher soil temperatures also increased the mean soil depth at which 14C was allocated. Our findings highlight the dependence of C uptake, use, and partitioning on both air and soil temperature, with the latter being relatively more important. The strong temperature‐sensitivity of C assimilate use in the roots and rhizosphere supports the hypothesis that cold limitation on C uptake is primarily mediated by reduced sink strength in the roots. We conclude that variations in soil rather than air temperature are going to drive plant responses to warming in cold environments, with potentially large changes in C cycling due to enhanced transfer of plant‐derived C to soils.  相似文献   

7.
Carbon fluxes between natural ecosystems and the atmosphere have received increased attention in recent years due to the impact they have on climate. In order to investigate independently how soil moisture and temperature control carbon fluxes into and out of a dry subarctic dwarf shrub dominated heath, monoliths containing soil and plants were incubated at three different moisture levels and subjected to four different temperature levels between 7 and 20 °C. Ecosystem CO2 exchange was monitored continuously day and night during the 16 to 18 days that each of three experiments lasted. Additionally, the carbon allocation pattern of the plants was investigated by labelling monoliths with 14CO2 followed by harvest of above and below ground plant parts. The results revealed that the three different soil moisture levels caused distinctly differing levels of CO2 fluxes. Also, both carbon fixation calculated as gross ecosystem production (GEP) and carbon release measured as ecosystem respiration (ER) increased with increasing temperatures, with ER increasing faster than GEP. Hence, short term carbon loss from the ecosystem accelerated with raised temperatures. Temperature sensitivity of the ecosystem was dependent on the soil moisture level, shown by differing Q10 values of both GEP and ER at different soil moisture levels. It is therefore highly important to take soil moisture levels into consideration when evaluating responses of ecosystem carbon balance to changes in temperature. The greatest C fixation took place via the two most dominant species of the ecosystem, Vaccinium uliginosum and Empetrum hermaphroditum, with the former being responsible for the different size of C fixation at the three moisture levels.  相似文献   

8.
It is unclear how changing atmospheric composition will influence the plant–soil interactions that determine soil organic matter (SOM) levels in fertile agricultural soils. Positive effects of CO2 fertilization on plant productivity and residue returns should increase SOM stocks unless mineralization or biomass removal rates increase in proportion to offset gains. Our objectives were to quantify changes in SOM stocks and labile fractions in prime farmland supporting a conventionally managed corn–soybean system and the seasonal dynamics of labile C and N in soybean in plots exposed to elevated [CO2] (550 ppm) under free-air concentration enrichment (FACE) conditions. Changes in SOM stocks including reduced C/N ratios and labile N stocks suggest that SOM declined slightly and became more decomposed in all plots after 3 years. Plant available N (>273 mg N kg−1) and other nutrients (Bray P, 22–50 ppm; extractable K, 157–237 ppm; Ca, 2,378–2,730 ppm; Mg, 245–317 ppm) were in the high to medium range. Exposure to elevated [CO2] failed to increase particulate organic matter C (POM-C) and increased POM-N concentrations slightly in the surface depth despite known increases (≈30%) in root biomass. This, and elevated CO2 efflux rates indicate accelerated decay rates in fumigated plots (2001: elevated [CO2]: 10.5 ± 1.2 μmol CO2 m−2 s−1 vs. ambient: 8.9 ± 1.0 μmol CO2 m−2 s−1). There were no treatment-based differences in the within-season dynamics of SOM. Soil POM-C and POM-N contents were slightly greater in the surface depth of elevated than ambient plots. Most studies attribute limited ability of fumigated soils to accumulate SOM to N limitation and/or limited plant response to CO2 fertilization. In this study, SOM turnover appears to be accelerated under elevated [CO2] even though soil moisture and nutrients are non-limiting and plant productivity is consistently increased. Accelerated SOM turnover rates may have long-term implications for soil’s productive potential and calls for deeper investigation into C and N dynamics in highly-productive row crop systems.  相似文献   

9.
The atmospheric concentration of CO2 is predicted to reach double current levels by 2075. Detritus from aboveground and belowground plant parts constitutes the primary source of C for soil organic matter (SOM), and accumulation of SOM in forests may provide a significant mechanism to mitigate increasing atmospheric CO2 concentrations. In a poplar (three species) plantation exposed to ambient (380 ppm) and elevated (580 ppm) atmospheric CO2 concentrations using a Free Air Carbon Dioxide Enrichment (FACE) system, the relative importance of leaf litter decomposition, fine root and fungal turnover for C incorporation into SOM was investigated. A technique using cores of soil in which a C4 crop has been grown (δ13C −18.1‰) inserted into the plantation and detritus from C3 trees (δ13C −27 to −30‰) was used to distinguish between old (native soil) and new (tree derived) soil C. In-growth cores using a fine mesh (39 μm) to prevent in-growth of roots, but allow in-growth of fungal hyphae were used to assess contribution of fine roots and the mycorrhizal external mycelium to soil C during a period of three growing seasons (1999–2001). Across all species and treatments, the mycorrhizal external mycelium was the dominant pathway (62%) through which carbon entered the SOM pool, exceeding the input via leaf litter and fine root turnover. The input via the mycorrhizal external mycelium was not influenced by elevated CO2, but elevated atmospheric CO2 enhanced soil C inputs via fine root turnover. The turnover of the mycorrhizal external mycelium may be a fundamental mechanism for the transfer of root-derived C to SOM.  相似文献   

10.
We present a new soil respiration model, describe a formal model testing procedure, and compare our model with five alternative models using an extensive data set of observed soil respiration. Gas flux data from rangeland soils that included a large number of measurements at low temperatures were used to model soil CO2 emissions as a function of soil temperature and water content. Our arctangent temperature function predicts that Q10 values vary inversely with temperature and that CO2 fluxes are significant below 0 °C. Independent data representing a broad range of ecosystems and temperature values were used for model testing. The effects of plant phenology, differences in substrate availability among sites, and water limitation were accounted for so that the temperature equations could be fairly evaluated. Four of the six tested models did equally well at simulating the observed soil CO2 respiration rates. However, the arctangent variable Q10 model agreed closely with observed Q10 values over a wide range of temperatures (r2 = 0.94) and was superior to published variable Q10 equations using the Akaike information criterion (AIC). The arctangent temperature equation explained 16–85% of the observed intra-site variability in CO2 flux rates. Including a water stress factor yielded a stronger correlation than temperature alone only in the dryland soils. The observed change in Q10 with increasing temperature was the same for data sets that included only heterotrophic respiration and data sets that included both heterotrophic and autotrophic respiration.  相似文献   

11.
We investigated the effects of three elevated atmospheric CO2 levels on a Populus deltoides plantation at Biosphere 2 Laboratory in Oracle Arizona. Stable isotopes of carbon have been used as tracers to separate the carbon present before the CO2 treatments started (old C), from that fixed after CO2 treatments began (new C). Tree growth at elevated [CO2] increased inputs to soil organic matter (SOM) by increasing the production of fine roots and accelerating the rate of root C turnover. However, soil carbon content decreased as [CO2] in the atmosphere increased and inputs of new C were not found in SOM. Consequently, the rates of soil respiration increased by 141% and 176% in the 800 and 1200 μL L?1 plantations, respectively, when compared with ambient [CO2] after 4 years of exposure. However, the increase in decomposition of old SOM (i.e. already present when CO2 treatments began) accounted for 72% and 69% of the increase in soil respiration seen under elevated [CO2]. This resulted in a net loss of soil C at a rate that was between 10 and 20 times faster at elevated [CO2] than at ambient conditions. The inability to retain new and old C in the soil may stem from the lack of stabilization of SOM, allowing for its rapid decomposition by soil heterotrophs.  相似文献   

12.
Temperate grasslands contribute about 20% to the global terrestrial carbon (C) budget with sugars contributing 10–50% to this soil C pool. Whether the observed increase of the atmospheric CO2 concentration (pCO2) leads to additional C sequestration into these ecosystems or enhanced mineralization of soil organic matter (SOM) is still unclear. Therefore, the aim of the presented study was to investigate the impact of elevated atmospheric pCO2 on C sequestration and turnover of plant‐ (arabinose and xylose) and microbially derived (fucose, rhamnose, galactose, mannose) sugars in soil, representing a labile SOM pool. The study was carried out at the Swiss Free Air Carbon Dioxide Enrichment (FACE) experiment near Zurich. For 7 years, Lolium perenne swards were exposed to ambient and elevated pCO2 (36 and 60 Pa, respectively). The additional CO2 in the FACE plots was depleted in 13C compared with ambient plots, so that ‘new’ (<7 years) C inputs could be determined by means of compound‐specific stable isotope analysis (13C : 12C). Samples were fractionated into clay, silt, fine sand and coarse sand, which yielded relatively stable and labile SOM pools with different turnover rates. Total sugar sequestration into bulk soil after 7 years of exposure to elevated pCO2 was about 28% compared with the control plots. In both ambient and elevated plots, total sugar concentrations in particle size fractions increased in the order sand2 for coarse sand, fine sand and silt (about 274%, 17% and 96%, respectively) but about 14% lower for clay compared with the control plots, corroborating that sugars belong to the labile SOM pool. The fraction of newly produced sugars gradually increased by up to 50% in bulk soil samples after 7 years under elevated pCO2. In the ambient plots, sugars were enriched in 13C by up to 10‰ when compared with bulk soil samples from the same plots. The enrichment of 13C in plant‐derived sugars was up to 13.4‰ when compared with parent plant material. After 7 years, the δ13C values of individual sugars decreased under elevated (13C‐depleted) CO2 in bulk soil and particle size fractions, varying between −13.7‰ and −37.8‰ under elevated pCO2. In coarse and fine sand, silt and clay fractions newly produced sugars made up 106%, 63%, 60% and 45%, respectively, of the total sugars present after 7 years. Mean residence time (MRT) of the sugars were calculated according to two models revealing a few decades, mean values increasing in the order coarse sand2 led to a net sequestration of about 30% of labile SOM (sugars) while no increase of total organic C was observed at the same plots. The additional labile SOM is gradually incorporated into more stable SOM pools such as silt and clay fractions in the medium term (<7 years). MRT of labile (sugar) SOM under elevated pCO2 is in the same order of magnitude when compared with studies under ambient pCO2 though no direct comparison of elevated and ambient plots was possible.  相似文献   

13.
Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0–10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long‐term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m?2 s?1, control: 2.34 ± 0.29 μmol m?2 s?1; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass‐specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long‐term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C‐rich calcareous temperate forest soils.  相似文献   

14.
Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral‐organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF‐OC), clay‐size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal‐to‐HF‐OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.  相似文献   

15.
Detached Nicotiana rustica leaves were exposed for 2 minutes to temperatures in the range 36° to 51°C. Above 45°C, 14CO2 fixation was reduced by half as compared with controls. The fall in 14CO2 fixation continued for 2 1/2 h. Recovery was completed 45 h after the treatment. Above 45°C there was an increase in the labeled cationic and anionic fractions and a decrease in the neutral fractions, both increase and decrease being associated with the impaired CO2 fixation. However, these changes in products were also demonstrated when leaves were exposed to the high temperature after labeling.  相似文献   

16.
The ability to predict C cycle responses to temperature changes depends on the accurate representation of temperature sensitivity (Q10) of soil organic matter (SOM) decomposition in C models for different C pools and soil depths. Theoretically, Q10 of SOM decomposition is determined by SOM quality and availability (referred to here as SOM protection). Here, we focus on the role of SOM protection in attenuating the intrinsic, SOM quality dependent Q10. To assess the separate effects of SOM quality and protection, we incubated topsoil and subsoil samples characterized by differences in SOM protection under optimum moisture conditions at 25 °C and 35 °C. Although lower SOM quality in the subsoil should lead to a higher Q10 according to kinetic theory, we observed a much lower overall temperature response in subsoil compared with the topsoil. Q10 values determined for respired SOM fractions of decreasing lability within the topsoil increased from 1.9 for the most labile to 3.8 for the least labile respired SOM, whereas corresponding Q10 values for the subsoil did not show this trend (Q10 between 1.4 and 0.9). These results indicate the existence of a limiting factor that attenuates the intrinsic effect of SOM quality on Q10 in the subsoil. A parallel incubation experiment of 13C‐labeled plant material added to top‐ and subsoil showed that decomposition of an unprotected C substrate of equal quality responds similarly to temperature changes in top‐ and subsoil. This further confirms that the attenuating effect on Q10 in the subsoil originates from SOM protection rather than from microbial properties or other nutrient limitations. In conclusion, we found experimental evidence that SOM protection can attenuate the intrinsic Q10 of SOM decomposition.  相似文献   

17.
Temperate forests of North America are thought to besignificant sinks of atmospheric CO2. Wedeveloped a below-ground carbon (C) budget forwell-drained soils in Harvard Forest Massachusetts, anecosystem that is storing C. Measurements of carbonand radiocarbon (14C) inventory were used todetermine the turnover time and maximum rate ofCO2 production from heterotrophic respiration ofthree fractions of soil organic matter (SOM):recognizable litter fragments (L), humified lowdensity material (H), and high density ormineral-associated organic matter (M). Turnover timesin all fractions increased with soil depth and were2–5 years for recognizable leaf litter, 5–10 years forroot litter, 40–100+ years for low density humifiedmaterial and >100 years for carbon associated withminerals. These turnover times represent the timecarbon resides in the plant + soil system, and mayunderestimate actual decomposition rates if carbonresides for several years in living root, plant orwoody material.Soil respiration was partitioned into two componentsusing 14C: recent photosynthate which ismetabolized by roots and microorganisms within a yearof initial fixation (Recent-C), and C that is respiredduring microbial decomposition of SOM that resides inthe soil for several years or longer (Reservoir-C).For the whole soil, we calculate that decomposition ofReservoir-C contributes approximately 41% of thetotal annual soil respiration. Of this 41%,recognizable leaf or root detritus accounts for 80%of the flux, and 20% is from the more humifiedfractions that dominate the soil carbon stocks.Measurements of CO2 and 14CO2 in thesoil atmosphere and in total soil respiration werecombined with surface CO2 fluxes and a soil gasdiffusion model to determine the flux and isotopicsignature of C produced as a function of soil depth. 63% of soil respiration takes place in the top 15 cmof the soil (O + A + Ap horizons). The average residencetime of Reservoir-C in the plant + soil system is8±1 years and the average age of carbon in totalsoil respiration (Recent-C + Reservoir-C) is 4±1years.The O and A horizons have accumulated 4.4 kgC m–2above the plow layer since abandonment by settlers inthe late-1800's. C pools contributing the most to soilrespiration have short enough turnover times that theyare likely in steady state. However, most C is storedas humified organic matter within both the O and Ahorizons and has turnover times from 40 to 100+ yearsrespectively. These reservoirs continue to accumulatecarbon at a combined rate of 10–30 gC mminus 2yr–1. This rate of accumulation is only 5–15% of the total ecosystem C sink measured in this stand using eddy covariance methods.  相似文献   

18.
The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral‐bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual 13C and 15N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched 13C and 15N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance 13C–CO2 and 15N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in 13C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral‐associated organic matter.  相似文献   

19.
The importance of soil organic matter (SOM) in the global carbon (C) cycle has been highlighted by many studies, but the way in which SOM stabilization processes and chemical composition affect decomposition rates under natural climatic conditions is not yet well understood. To relate the temperature sensitivity of heterotrophic soil respiration to the decomposition potential of SOM, we compared temperature sensitivities of respiration rates from a 2-year long soil translocation experiment from four elevations along a ~3000 m tropical forest gradient. We determined SOM stabilization mechanisms and the molecular structure of soil C from different horizons collected before and after the translocation. Soil samples were analysed by physical fractionation procedures, 13C nuclear magnetic resonance (NMR) spectroscopy, and differential scanning calorimetry (DSC). The temperature sensitivity (Q 10) of heterotrophic soil respiration at the four sites along the elevation transect did not correlate with either the available amount of SOM or its chemical structure. Only the relative distribution of C into physical soil fractions correlated with Q 10 values. We therefore conclude that physical fractionation of soil samples is the most appropriate way to assess the temperature sensitivity of SOM.  相似文献   

20.
Increases in growth temperature have been observed to affect photosynthesis differently under long-term exposure to ambient- and twice ambient-air CO2 concentrations. This study investigates the causes of this interaction in wheat (Triticum aestivum L.) grown in the field over two consecutive years under temperature gradient chambers in ambient (370 μmol mol−1) or elevated (700 μmol mol−1) atmospheric CO2 concentrations and at ambient or ambient +4°C temperatures, with either a low or a high nitrogen supply. The photosynthesis-internal CO2 response curves and the activity, activation state, kcat and amount of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) were measured, as well as the soluble protein concentration in flag leaves at ear emergence and 8–15 days after anthesis. A high nitrogen supply increased Vcmax, the Rubisco amount and activity and soluble protein contents, but did not significantly change the Rubisco kcat. Both elevated CO2 and above ambient temperatures had negative effects on Vcmax and Rubisco activity, but at elevated CO2, an increase in temperature did not decrease Vcmax or Rubisco activity in relation to ambient temperature. The amounts of Rubisco and soluble protein decreased with elevated CO2 and temperature. The negative impact of elevated CO2 on Rubisco properties was somewhat counteracted at elevated temperatures by an increase in kcat. This effect can diminish the detrimental effects on photosynthesis of combined increases of CO2 and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号