首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants, phototropins 1 (phot1) and 2 (phot2) mediate chloroplast movement to blue light (BL). A recent report showed that phototropins (phot) are required for the expression of chloroplast genes in rice. The light-induced responses of phot1a rice mutants result in H2O2-mediated damage to chloroplast photosystems, indicating that phot-regulated responses might be associated with the other photoreceptor, such as cryptochrome (cry) BL receptor. This suggests diversification and specialization of photoreceptor signaling in plants.Key words: blue light, blue light receptor, chloroplast, cryptochrome, H2O2, phototropin, signalingIn order to counteract the adverse effects of environmental ight, plants have evolved sensory mechanisms that monitor their surroundings and adapt their growth and development through the use of a complex signaling network.1 Plants sense their environmental light conditions by using three principal families of signal-transducing photoreceptors; the red/far-red (R/FR) light-absorbing phytochromes (phy) and the UV-A/blue light (BL)-absorbing cryptochromes (cry) and phototropins (phot).2 The phys are reversibly photochromic biliproteins that absorb maximally in the R and FR light regions of the spectrum. Cry and phot possess a pair of flavin derivates. Two cry and two phot family members have been identified and well characterized in Arabidopsis. Photoreceptors regulate development throughout the plant lifecycle, from seed germination through to plant maturation and the onset of reproduction. BL regulates a wide variety of photoresponses in higher plants, including chloroplast movement, inhibition of hypocotyls elongation, circadian timing, regulation of gene expression and stomatal opening.35 The roles of individual photoreceptors in mediating plant development have, however, often been confounded by redundant, synergistic and in some cases mutually antagonistic mechanisms of action. The mechanisms of photoreceptor signal transduction are far from being completely elucidated, but are believed to involve both cytosolic and nuclear components. The presence of putative kinase domains within photoreceptor proteins has suggested a role for phosphorylation in light signaling. The action of cry1 and cry2 has been demonstrated to involve BL-mediated autophosphorylation.6,7 Phot1 was originally identified as a 120 kDa-membrane associated protein displaying BL-mediated autophosphorylation.8 It is now well accepted that phot mediates chloroplast movement, phototropism and stomatal opening in plants in response to BL.  相似文献   

2.
3.
Cryptochrome 1 controls tomato development in response to blue light   总被引:9,自引:2,他引:7  
Cryptochrome genes (CRY) are a novel class of plant genes encoding proteins that bear a strong resemblance to photolyases, a rare class of flavoproteins that absorb light in the blue (B) and UV-A regions of the spectrum and utilise it for photorepair of UV-damaged DNA. In Arabidopsis, both CRY1 and CRY2 are implicated in numerous blue light-dependent responses, including inhibition of hypocotyl elongation, leaf and cotyledon expansion, pigment biosynthesis, stem growth and internode elongation, control of flowering time and phototropism. No information about the in vivo function of CRY genes is available in other plant species. The tomato CRY1 gene (TCRY1) encodes a protein of 679 amino acids, which shows 78% identity and 88% similarity to Arabidopsis CRY1. In order to verify the in vivo function of TCRY1, we constructed antisense tomato plants using the C-terminal portion of the gene. Partial repression of both mRNA and protein levels was observed in one of the transformants. The progeny from this transformant showed an elongated hypocotyl under blue but not under red light. This character co-segregated with the transgene and was dependent on transgene dosage. An additional, partially elongated phenotype was observed in adult plants grown in the greenhouse under dim light and short days with no artificial illumination. This phenotype was suppressed by artificial illumination of both short and long photoperiods. The synthesis of anthocyanins under blue light was reduced in antisense seedlings. In contrast, carotenoid and chlorophyll levels and second positive phototropic curvature were essentially unaltered.  相似文献   

4.
The ability of a plant to dynamically acclimate to different light environments is, in general, genetically determined. Phalaenopsis amabilis is a CAM orchid with heavy self-shading. The aim of this study was to find out how the photosynthetic capacity of its mature lower leaves acclimates to the low light environment, and whether it possessed a potential for reacclimation following transfer of lower leaves to higher irradiance. We found that the photosynthetic performance of the leaves of Phalaenopsis was flexibly and reversibly adjusted to growth irradiance, making it possible to improve the light environment of the plant by increasing light exposure of lower leaves and bring about a higher photosynthetic production. We have tested the effectiveness of a simple setup using mirrors to augment light from the side and thus enhanced the irradiance in the shaded area of the plant. Both photosynthesis and starch contents of leaves as well as the number of flowers per plant increased greatly.  相似文献   

5.
Phototropin is the blue-light receptor that mediates phototropism, chloroplast movement, and stomatal opening in Arabidopsis. Blue and red light induce chloroplast movement in the moss Physcomitrella patens. To study the photoreceptors for chloroplast movement in P. patens, four phototropin genes (PHOTA1, PHOTA2, PHOTB1, and PHOTB2) were isolated by screening cDNA libraries. These genes were classified into two groups (PHOTA and PHOTB) on the basis of their deduced amino acid sequences. Then phototropin disruptants were generated by homologous recombination and used for analysis of chloroplast movement. Data revealed that blue light-induced chloroplast movement was mediated by phototropins in P. patens. Both photA and photB groups were able to mediate chloroplast avoidance, as has been reported for Arabidopsis phot2, although the photA group contributed more to the response. Red light-induced chloroplast movement was also significantly reduced in photA2photB1photB2 triple disruptants. Because the primary photoreceptor for red light-induced chloroplast movement in P. patens is phytochrome, phototropins may be downstream components of phytochromes in the signaling pathway. To our knowledge, this work is the first to show a function for the phototropin blue-light receptor in a response to wavelengths that it does not absorb.  相似文献   

6.
7.
濒危植物银杉幼树对生长光强的季节性光合响应   总被引:29,自引:1,他引:29  
银杉(Cathayaargyrophylla)是我国松科中特有的单种属植物,被认为处于濒危状态。在对银杉群落多年调查研究的基础上,针对银杉幼树生长过程对光强的需求特性,我们开展了银杉幼树对光的适应性研究。试验在人工培育的银杉苗圃地,采用遮荫的方法设置不同的光环境处理(100%、45%和3%自然光强),利用气体交换技术和叶绿素荧光技术测定了3种光强下银杉叶片光合生理指标的变化,探讨了不同光环境下银杉幼树光合能力在夏季和冬季的变化及其对生长光强的响应等。结果表明:在夏季银杉生长旺盛时期,遮荫导致叶片最大光合速率(Pnmax)、羧化效率(CE)下降,但不同叶龄叶片的下降幅度不同。随生长光强的下降,银杉幼树的光补偿点(LCP)和光饱和点(LSP)有所降低,但全晴天时,低光强(3%自然光强)条件下实际的光辐射量高于当年生叶片光补偿点的累积时间约6h,而且与光饱和的区域相差极大,造成全天碳同化量低,同化物累积少,严重影响了银杉幼树的正常生长。在不同处理中全光强条件下银杉幼树长势最好,45%光强条件下幼树生长减慢。冬季银杉最大光合速率(Pnmax)、羧化效率(CE)值均低于夏季,光补偿点(LCP)和光饱和点(LSP)也较夏季降低。全光照条件下无论是当年生叶片和一年生叶片,在冬季均出现了轻微光抑制现象,适度遮荫有利于银杉抵御冬季光抑制。无论在遮荫或不遮荫条件下,冬季银杉叶片将所吸收的相对过剩光能通过非辐射途径耗散出去,表现出一种光保护策略。  相似文献   

8.
This paper describes a study into the potential of plants to acclimate to light environments that fluctuate over time periods between 15 min and 3 h. Plants of Arabidopsis thaliana (L.) Heynh., Digitalis purpurea L. and Silene dioica (L.) Clairv. were grown at an irradiance 100 mol m-2 s-1. After 4–6 weeks, they were transferred to light regimes that fluctuated between 100 and either 475 or 810 mol m-2 s-1, in a regular cycle, for 7 days. Plants were shown, in most cases, to be able to undergo photosynthetic acclimation under such conditions, increasing maximum photosynthetic rate. The extent of acclimation varied between species. A more detailed study with S. dioica showed that this acclimation involved changes in both Rubisco protein and cytochrome f content, with only marginal changes in pigment content and composition. Acclimation to fluctuating light, at the protein level, did not fully reflect the acclimation to continuous high light - Rubisco protein increased more than would be expected from the mean irradiance, but less than expected from the high irradiance; cytochrome f increased when neither the mean nor the high irradiance would be expected to induce an increase.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

9.
Plants possess a remarkable capacity to alter their phenotype in response to the highly heterogeneous light conditions they commonly encounter in natural environments. In the present study with the weedy annual plant Sinapis arvensis, we (a) tested for the adaptive value of phenotypic plasticity in morphological and life history traits in response to low light and (b) explored possible fitness costs of plasticity. Replicates of 31 half-sib families were grown individually in the greenhouse under full light and under low light (40% of ambient) imposed by neutral shade cloth. Low light resulted in a large increase in hypocotyl length and specific leaf area (SLA), a reduction in juvenile biomass and a delayed onset of flowering. Phenotypic selection analysis within each light environment revealed that selection favoured large SLA under low light, but not under high light, suggesting that the observed increase in SLA was adaptive. In contrast, plasticity in the other traits measured was maladaptive (i.e. in the opposite direction to that favoured by selection in the low light environment). We detected significant additive genetic variance in plasticity in most phenotypic traits and in fitness (number of seeds). Using genotypic selection gradient analysis, we found that families with high plasticity in SLA had a lower fitness than families with low plasticity, when the effect of SLA on fitness was statistically kept constant. This indicates that plasticity in SLA incurred a direct fitness cost. However, a cost of plasticity was only expressed under low light, but not under high light. Thus, models on the evolution of phenotypic plasticity will need to incorporate plasticity costs that vary in magnitude depending on environmental conditions.  相似文献   

10.
Profiling lipid changes in plant response to low temperatures   总被引:1,自引:0,他引:1  
Changes in membrane lipid composition play multiple roles in plant adaptation and survival in the face of chilling and freezing damage. An electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based approach has been used to quantitatively profile membrane lipid molecular species in plant response to low temperatures. This method involves the direct infusion of unfractionated lipid extracts into a mass spectrometer in the precursor and neutral loss scanning modes to identify and quantify lipid species. The profiling analysis reveals significant and distinct lipid changes during cold acclimation and freezing. Comparative profiling of wildtype and mutants provides information about the metabolic and cellular functions of specific phospholipase D genes and enzymes.  相似文献   

11.
12.
Optimum growth conditions and inoculation regimes were determined for severalFrankia strains isolated from both Alnus and Casuarina host plants. Growth conditions were estabilished that allowed a reduction in generation time to less than 15 hours for certain Alnus derivedFrankia. Differences in plant growth response were observed with differing inoculum levels and soil mixtures. Elite strains of Alnus derivedFrankia were isolated that elicited similar growth reponses in allAlnus species tested; however, differences were observed betweenFrankia strains and plant growth response of variousCasuarina species tested.  相似文献   

13.
14.
The effects of blue light (BL) on leaf gas exchange of Populus × canadensis, a strong isoprene emitter, and Quercus ilex and Citrus reticulata, two monoterpene emitters with respectively small and large storage pools for monoterpenes, were studied. Leaves were initially exposed to a saturating photosynthetic photon flux density (PPFD) of white light (WL), which was then progressively reduced to perform WL-response curves. Leaves acclimated to saturating WL were then quickly exposed to equivalent BL levels to perform BL-response curves. Blue light did not significantly affect photosynthetic parameters in the light-limited portion of the PPFD-response curves in both P. × canadensis and Q. ilex. Whereas photosynthesis (A), stomatal conductance (gs), and mesophyll conductance (gm) were significantly decreased at high PPFDs of BL. A was similarly inhibited by BL in C. reticulata, but there was no significant effect of light quality on gs. Overall these results show that the negative effect of BL on photosynthesis is widespread in tree species with different leaf characteristics, and that this involves coordinated reductions in gs and gm. BL negatively affected isoprene emission and, to a lesser extent monoterpene emissions, in concert with photosynthetic inhibition. Interesting, both isoprene and monoterpene emissions were shown to be inversely dependent upon intercellular [CO2]. These results indicate that a change in light spectral quality, which can vary during the day, between days and within seasons, can alter photosynthesis and isoprenoid emissions, depending on the PPFD intensity. Such effects should be strongly considered in photosynthesis and volatile isoprenoid emission models.  相似文献   

15.
Rerkasem  Benjavan  Jamjod  Sansanee 《Plant and Soil》1997,193(1-2):169-180
Plant response to low B in the soil varies widely among species, and among genotypes within a species. Boron efficient genotypes are those that are able to grow well in soils in which other genotypes are adversely affected by B deficiency. This review considers the extent of variation in B efficiency in plant species and genotypes, the physiological nature of the efficiency mechanisms, what is known of the genetic basis for inheritance, screening techniques and the practical implications of the genotypic variations.Frequently, B efficiency is the sole reason for a difference between an average yield and complete crop failure. Severe yield losses can be effectively prevented by the inclusion of B efficiency as a selection criterion in crop breeding and improvement programmes for regions with low B soils. In addition, the expression of B deficiency primarily through male sterility, which is common in many species, creates opportunities for outcrossing in normally self-fertilised species. This, in turn, leads to two possibilities. Firstly, self fertilisation, and therefore maintenance of pure lines, cannot always be assumed in self pollinated species where B efficient and inefficient genotypes are grown side by side on low B soils. Secondly, B deficiency, in soil or artificial media, may be used as a fertility selective medium in which the male sterile B inefficient genotypes and the male fertile B efficient genotypes could hybridise naturally. This would be useful as a simple and economical method for creating heterozygous populations in breeding programmes as well as for producing hybrid seeds. Now that the roles of B in plant growth and development are beginning to be clarified, the efficiency mechanisms as well as the governing genetics can be explained. Practical benefits from the genetic diversity of B efficiency will be enhanced by a better understanding of B efficiency mechanisms and the molecular bases for their genetic control.  相似文献   

16.
Summary. Concurrently with cold-induced disintegration of microtubular structures in the cytoplasm, gradual tubulin accumulation was observed in a progressively growing proportion of interphase nuclei in tobacco BY-2 cells. This intranuclear tubulin disappeared upon rewarming. Simultaneously, new microtubules rapidly emerged from the nuclear periphery and reconstituted new cortical arrays, as was shown by immunofluorescence. A rapid exclusion of tubulin from the nucleus during rewarming was also observed in vivo in cells expressing GFP-tubulin. Nuclei were purified from cells that expressed GFP fused to an endoplasmic-reticulum retention signal (BY-2-mGFP5-ER), and green-fluorescent protein was used as a diagnostic marker to confirm that the nuclear fraction was not contaminated by nuclear-envelope proteins. These purified, GFP-free nuclei contained tubulin when isolated from cold-treated cells, whereas control nuclei were void of tubulin. Furthermore, highly conserved putative nuclear-export sequences were identified in tubulin sequences. These results led us to interpret the accumulation of tubulin in interphasic nuclei, as well as its rapid nuclear export, in the context of ancient intranuclear tubulin function during the cell cycle progression. Correspondence and reprints: Department of Plant Physiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic.  相似文献   

17.
披针叶茴香对变化光环境的表型可塑性   总被引:1,自引:0,他引:1  
植物对变化光环境的表型可塑性大小影响其在林下生境中分布、生长和更新。为探讨披针叶茴香在不同光环境下的整体表型可塑性及其适应机制,采用遮荫试验模拟5种光照条件(100%、52%、33%、15%和6%相对光照强度),研究了不同光环境下披针叶茴香叶片形态、生理、解剖结构、根系形态以及生物量分配等的变化。结果表明:叶生物量在5种光照处理之间差异不显著,但叶面积和比叶面积均随光照强度减弱显著增加。遮荫处理增加了叶绿素a、叶绿素b和类胡萝卜素的含量,但叶绿素a/b比值随光照强度减弱而降低。遮荫降低了非结构性碳水化合物(淀粉和可溶性糖)和可溶性蛋白的含量,增加了叶片氮和磷含量,对叶片氮/磷比影响较小。在52%和33%相对光照处理下,叶片中硝酸盐含量最低,而在100%和6%相对光照处理下硝酸盐积累较多。根生物量、细根和粗根的长度、表面积以及比根长和比根表面积在5种光照处理之间均没有显著差异,根系氮含量在低光环境(15%和6%相对光照处理)中显著降低。随光照强度减弱,披针叶茴香采取保守生存策略,并没有增加叶生物量的分配,而是分配较多的生物量给枝条和树干,储存能量。综合来看,披针叶茴香具有较宽的光生态幅,在6%—100%光照强度下均能正常生长,遮荫有利于披针叶茴香地上和总生物量的积累,52%的相对光照条件下生长最佳。变化光环境下根系性状和整体结构的可塑性相对较低,叶片生理性状的可塑性在披针叶茴香适应光环境变化过程中发挥了主要作用。  相似文献   

18.
Pathogens are thought to promote diversity in plant communities by preventing competitive exclusion. Previous studies have focussed primarily on single-plant, single-pathogen interactions, yet the interactions between multiple pathogens and multiple hosts may have non-additive impacts on plant community composition. Here, we report that both a bacterial and a fungal pathogen maintained the diversity of a four-species plant community across five generations; however, significant interactions between the pathogens resulted in less plant diversity when the two pathogens were present than when the fungal pathogen was present alone. Standard models predict that pathogens will maintain plant diversity when they cause a disproportionate loss of fitness in the dominant plant species. In our experiment, however, pathogens maintained plant diversity because the rare species produced more seeds through a compensatory response to pathogen infection. Finally, we found that the influence of pathogens on maintaining plant diversity was 5.5 times greater than the influence of nutrient resource heterogeneity. Pathogens may be a major factor in maintaining plant diversity, and our findings emphasize the importance of investigating the roles of pathogens in natural plant communities.  相似文献   

19.
Clonal growth is of great importance for survival, growth, expansion, and resource utilization of some species. Knowing how clonal plants respond morphologically and physiologically to different light environments can be useful to explain their occurrence and abundance patterns under specific environmental conditions. Responses of clonal growth, leaf gas exchange, fluorescence emission, and photosynthetic pigment concentrations to different light environments (100, 60, 30, and 15%) were studied in Amomum villosum, grown in the traditional way for economic purpose in Xishuangbanna, southwest China. The results showed that A. villosum attained vigorous clonal growth under 30% and 60% light, with a higher plant height, number of ramets, stolon length, thicker stems and stolons. Shade-grown A. villosum possessed a larger leaf area than that of the sun-grown plants in order to capture more light. For A. villosum, the higher light-saturated net photosynthetic rate, light-saturation point, larger fresh and dry biomass can explained the better clonal growth for A. villosum under 30% and 60% light. Amomum villosum attained the highest values of minimal chlorophyll fluorescence under 100% light and the lowest values of maximum photochemical efficiency of PSII under 15% light. Our findings indicated that the full irradiance was too strong and 15% light was too weak for A. villosum plants. It was also verified by higher concentrations of photosynthetic pigments in the shaded plants compared to those grown under full sun light. Our results suggested that A. villosum seemed to be adapted to moderate light environment (60–30%) which was indicated by vigorous clonal growth and higher photosynthesis. This information is very useful to select clonal species for rainforest or understory projects. The cultivation of A. villosum in rainforest should not be done under too strong (100%) or too weak light environment (less than 15%).  相似文献   

20.
The steady-state and dynamic photosynthetic response of two poplar species (Populus tremuloides and P. fremontii) to variations in photon flux density (PFD) were observed with a field portable gas exchange system. These poplars were shown to be very shade intolerant with high light saturation (800 to 1300 mol photons m–2 s–1) and light compensation (70 to 100 mol m–2 s–1) points. Understory poplar leaves showed no physiological acclimation to understory light environments. These plants become photosynthetically induced quickly (10 min). Activation of Rubisco was the primary limitation for induction, with stomatal opening playing only a minor role. Leaves maintained high stomatal conductances and stomata were unresponsive to variations in PFD. Leaves were very efficient at utilizing rapidly fluctuating light environments similar to those naturally occurring in canopies. Post-illumination CO2 fixation contributed proportionally more to the carbon gain of leaves during short frequent lightflecks than longer less frequent ones. The benefits of a more dynamic understory light environment for the carbon economy of these species are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号