首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Das S  Raj L  Zhao B  Kimura Y  Bernstein A  Aaronson SA  Lee SW 《Cell》2007,130(4):624-637
A critical unresolved issue about the genotoxic stress response is how the resulting activation of the p53 tumor suppressor can lead either to cell-cycle arrest and DNA repair or to apoptosis. We show here that hematopoietic zinc finger (Hzf), a zinc-finger-containing p53 target gene, modulates p53 transactivation functions in an autoregulatory feedback loop. Hzf is induced by p53 and binds to its DNA-binding domain, resulting in preferential transactivation of proarrest p53 target genes over its proapoptotic target genes. Thus, p53 activation results in cell-cycle arrest in Hzf wild-type MEFs, while in Hzf(-/-) MEFs, apoptosis is induced. Exposure of Hzf null mice to ionizing radiation resulted in enhanced apoptosis in several organs, as compared to in wild-type mice. These findings provide novel insights into the regulation of p53 transactivation function and suggest that Hzf functions as a key player in regulating cell fate decisions in response to genotoxic stress.  相似文献   

5.
Sen N  Satija YK  Das S 《Molecular cell》2011,44(4):621-634
Metabolic stress results in p53 activation, which can trigger cell-cycle arrest, ROS clearance, or apoptosis. However, what determines the p53-mediated cell fate decision upon metabolic stress is not very well understood. We show here that PGC-1α binds to p53 and modulates its transactivation function, resulting in preferential transactivation of proarrest and metabolic target genes. Thus glucose starvation results in p53-dependent cell-cycle arrest and ROS clearance, but abrogation of PGC-1α expression results in extensive apoptosis. Additionally, prolonged starvation results in PGC-1α degradation concomitant with induction of apoptosis. We have also identified RNF2, a Polycomb group (PcG) protein, as the cognate E3 ubiquitin ligase. Starvation of mice where PGC-1α expression is abrogated results in loss of p53-mediated ROS clearance, enhanced p53-dependent apoptosis, and consequent severe liver atrophy. These findings provide key insights into the role of PGC-1α in regulating p53-mediated cell fate decisions in response to metabolic stress.  相似文献   

6.
Nuclear tumor suppressor p53 transactivates proapoptotic genes or antioxidant genes depending on stress severity, while cytoplasmic p53 induces mitochondrial-dependent apoptosis without gene transactivation. Although SIRT1, a p53 deacetylase, inhibits p53-mediated transactivation, how SIRT1 regulates these p53 multifunctions is unclear. Here we show that SIRT1 blocks nuclear translocation of cytoplasmic p53 in response to endogenous reactive oxygen species (ROS) and triggers mitochondrial-dependent apoptosis in mouse embryonic stem (mES) cells. ROS generated by antioxidant-free culture caused p53 translocation into mitochondria in wild-type mES cells but induced p53 translocation into the nucleus in SIRT1(-/-) mES cells. Endogenous ROS triggered apoptosis of wild-type mES through mitochondrial translocation of p53 and BAX but inhibited Nanog expression of SIRT1(-/-) mES, indicating that SIRT1 makes mES cells sensitive to ROS and inhibits p53-mediated suppression of Nanog expression. Our results suggest that endogenous ROS control is important for mES cell maintenance in culture.  相似文献   

7.
8.
9.
10.
The p53 tumor suppressor gene can induce either apoptosis or a permanent growth arrest (also termed senescence) phenotype in response to cellular stresses. We show that the increase in intracellular reactive oxygen species (ROS) associated with the magnitude of p53 protein expression correlated with the induction of either senescence or apoptosis in both normal and cancer cells. ROS inhibitors ameliorated both p53-dependent cell fates, implicating ROS accumulation as an effector in each case. The absence of Bax or PUMA strongly inhibited both p53-induced apoptosis and ROS increase, indicating an important role these p53 targets affecting mitochondrial function genes in p53-mediated ROS accumulation. Moreover, physiological p53 levels in combination with an exogenous ROS source were able to convert a p53 senescence response into apoptosis. All of these findings establish a critical role of ROS accumulation and mitochondrial function in p53-dependent cell fates and show that other ROS inducers can collaborate with p53 to influence these fate decisions. Thus, our studies imply that therapeutic agents that generate ROS are more likely to be toxic for normal cells than p53-negative tumor cells and provide a rationale for identifying therapeutic agents that do not complement p53 in ROS generation to ameliorate the cytotoxic side effects in normal cells.  相似文献   

11.
The p53 protein plays an important role in cancer prevention. In response to stress signals, p53 controls essential cell functions by regulating expression of its target genes. Full or partial loss of the p53 function in cancer cells usually results from mutations of the p53 gene. Some of them are temperature-dependent, allowing reactivation of the p53 function in certain temperature. These mutations can alter general transactivation ability of the p53 protein or they modify its transactivation only towards specific genes. We analyzed transactivation of several target genes by 23 temperature-dependent p53 mutants and stratified them into four functional groups. Seventeen p53 mutants exhibited temperature-dependency and discriminative character in human and yeast cells. Despite the differences of yeast and human cells, they allowed similar transactivation rates to the p53 mutants, thus providing evidence that functional analysis of separated alleles in yeast is valuable tool for assessment of the human p53 status.  相似文献   

12.
13.
14.
15.
Oxidative stress occurs as a consequence of disturbance in the balance between the generation of reactive oxygen species (ROS) and the antioxidant defence mechanisms. The interaction of ROS with DNA can cause single-, or double-strand breaks that subsequently can lead to the activation of p53, which is central for the regulation of cellular response, e.g. apoptosis, to a range of environmental and intracellular stresses. Previous reports have suggested a regulatory role of p53 in the early activation of caspase-2, upstream of mitochondrial apoptotic signaling. Here we show that excessive ROS formation, induced by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) exposure, induces apoptosis in primary cultured neural stem cells (NSCs) from cortices of E15 rat embryos. Following DMNQ exposure cells exhibited apoptotic hallmarks such as Bax oligomerization and activation, cytochrome c release, caspase activation and chromatin condensation. Additionally, we could show early p53 accumulation and a subsequent activation of caspase-2. The attenuation of caspase-2 activity with selective inhibitors could antagonize the mitochondrial signaling pathway and cell death. Overall, our results strongly suggest that DMNQ-induced oxidative stress causes p53 accumulation and consequently caspase-2 activation, which in turn initiates apoptotic cell death via the mitochondria-mediated caspase-dependent pathway in NSCs.  相似文献   

16.
17.
18.
19.
20.
MdmX protects p53 from Mdm2-mediated degradation   总被引:10,自引:0,他引:10       下载免费PDF全文
The p53 tumor suppressor protein is stabilized in response to cellular stress, resulting in activation of genes responsible for either cell cycle arrest or apoptosis. The cellular pathway for releasing normal cells from p53-dependent cell cycle arrest involves the Mdm2 protein. Recently, a p53-binding protein with homology to Mdm2 was identified and called MdmX. Like Mdm2, MdmX is able to bind p53 and inhibit p53 transactivation; however, the ability of MdmX to degrade p53 has yet to be examined. We report here that MdmX is capable of associating with p53 yet is unable to facilitate nuclear export or induce p53 degradation. In addition, expression of MdmX can reverse Mdm2-targeted degradation of p53 while maintaining suppression of p53 transactivation. Using a series of MdmX deletions, we have determined that there are two distinct domains of the MdmX protein that can stabilize p53 in the presence of Mdm2. One domain requires MdmX interaction with p53 and results in the retention of both proteins within the nucleus and repression of p53 transactivation. The second domain involves the MdmX ring finger and results in stabilization of p53 and an increase in p53 transactivation. The potential basis for stabilization and increased p53 transactivation by the MdmX ring finger domain is discussed. Based on these observations, we propose that the MdmX protein may function to maintain a nuclear pool of p53 protein in undamaged cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号