首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.  相似文献   

2.
In vivo, bone cement is subject to cyclic loading in a fluid environment. However, little is known about the effect of moisture absorption on the fatigue crack propagation resistance of bone cement. The effect of moisture absorption at 37 degrees C on the fatigue crack propagation resistance of a common bone cement (Endurance, DePuy, Orthopaedics, Inc.) was examined. Preliminary fracture toughness tests were conducted on disk-shaped, vacuum-mixed cement specimens (compact tension type) that were cyclically pre-cracked. Plain-strain fracture toughness K(IC) (MPa square root(m)) was determined. To study the effect of moisture absorption four treatment groups, with different soaking periods in Ringer's at 37 degrees C, of Endurance cement were tested. The specimens weights prior to and following soaking showed a significant increase in mean weight for specimens soaked for 8 and 12 weeks. Linear regression analysis of log(da/dN) vs. log (deltaK) was conducted on the combined data in each fatigue test group. Soaking bone cement in Ringer's at 37 degrees C for 8 and 12 weeks lead to an improvement in fatigue crack propagation resistance, that may be related to water sorption that increases polymer chain mobility, with enhanced crack tip blunting. It may be more physiologically relevant to conduct in vitro studies of fatigue and fracture toughness of bone cements following storage in a fluid environment.  相似文献   

3.
The goal of this study was to quantify the micromechanics of the cement–bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement–bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement–bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties.  相似文献   

4.
Aseptic loosening of tibial components due to degradation of the interface between bone cement and metallic tibial shaft component is still a persistent problem, particularly for surface-cemented tibial components. The surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. This study was done to prove crack formation in the bone cement near the metallic surface when this is not coated. We propose a newly developed coating process by SiOx-PVD layering to avoid crack formation. A biomechanical model for a vibration fatigue test was done to prove that crack formation can be significantly reduced in the case of coated surfaces. It was found that coated tibial components showed a highly significant reduction of cement cracking near the metal/bone cement interface (p < 0.01) and a significant reduction of gap formation in the metal-to-bone cement interface (p < 0.05). Coating dramatically reduces hydrolytic- and stress-related crack formation at the prosthesis metal/bone cement interface. This leads to a more homogenous load transfer into the cement mantle which should reduce the frequency of loosening in the metal/bone cement/bone interfaces. With surface coating of the tibial component it should become possible that surface-cemented TKAs reveal similar loosening rates as TKAs both surface- and stem-cemented. This would be an important clinical advantage since it is believed that surface cementing reduces metaphyseal bone loss in the case of revision and stress shielding for a better bone health.  相似文献   

5.
This study aimed to improve understanding of the mechanical aspects of cemented implant loosening. After aggressive fatigue loading of stem/cement/femur constructs, micro-cracks and stem/bone micro-motions were quantified to answer three research questions: Are cracks preferentially associated with the stem/cement interface, the cement/bone interface or voids? Is cement damage dependent on axial position? Does cement damage correlate with micro-motion between the stem and the bone? Eight Charnley Cobra stems were implanted in cadaveric femora. Six stem/cement/femur constructs were subjected to "stair-climbing" loads for 300 kcycles at 2Hz. Loads were normalized by construct stiffness to avoid fracture. Two additional constructs were not loaded. Transverse sections were cut at 10mm intervals, stained with a fluorescent dye penetrant and examined using epi-fluorescence stereomicroscopy. Crack lengths and cement areas were recorded for 9 sections per specimen. Crack length-density was calculated by dividing summed crack length by cement mantle area. To isolate the effect of loading, length-density data were offset by the baseline length-density measured in the non-loaded specimens. Significantly more cracks were associated with the interdigitated area (35.1%+/-11.6%) and the cement/bone interface (31.0%+/-6.2%) than with the stem/cement interface (11.0%+/-5.2%) or voids (6.1%+/-4.8%) (p<0.05). Load-induced micro-crack length-density was significantly dependent on axial position, increasing proximally (p<0.001). Micro-motions were small, all stems rotated internally. Cement damage did not correlate with micro-motion.  相似文献   

6.
Mechanical fatigue of bone cement leading to damage accumulation is implicated in the loosening of cemented hip components. Even though cracks have been identified in autopsy-retrieved mantles, damage accumulation by continuous growth and increase in number of microcracks has not yet been demonstrated experimentally. To determine just how damage accumulation occurs in the cement layer of a hip replacement, a physical model of the joint was used in an experimental study. The model regenerates the stress pattern found in the cement layers whilst at the same time allowing visualisation of microcrack initiation and growth. In this way the gradual process of damage accumulation can be determined. Six specimens were tested to 5 million cycles and a total of 1373 cracks were observed. It was found that, under the flexural loading allowed by the model, the majority of cracks come from pores in the bulk cement and not from the interfaces. Furthermore, the lateral and medial sides have statistically different damage accumulation behaviours, and pre-load cracks significantly accelerate the damage accumulation process. The experimental results confirm that damage accumulation commences early on in the loading history and that it is continuously increasing with load in the form of crack initiation and crack propagation. The results highlight the importance of replicating the loading and restraint conditions of clinical cement mantles when endeavouring to accurately model the damage accumulation process.  相似文献   

7.
The cement–bone interface provides fixation for the cement mantle within the bone. The cement–bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement–bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement–bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered: ‘only creep’, ‘only damage’ or ‘creep and damage’. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region.  相似文献   

8.
Cemented stem constructs were loaded in cyclic fatigue using stair climbing loading and the resulting fatigue damage to the cement mantle was determined in terms of angular position of crack and crack length. Techniques from circular statistics were used to determine if the distribution of micro-cracks was uniform. With a designated orientation of 0 degrees -90 degrees -180 degrees -270 degrees indicating lateral-anterior-medial-posterior anatomic directions, the overall distribution of cracks was not uniform (p<0.05) with a mean crack direction in the postero-medial (249 degrees) quadrant of the mantle. The crack angular distribution for proximal (postero-medial; 251 degrees) and distal (antero-medial; 112 degrees) regions of the cement mantle was also different (p<0.025). These findings suggest that the location of cement damage depends on anatomic position and appears to correspond with the tensile stress field in the cement mantle.  相似文献   

9.
Experimental models can be used for pre-clinical testing of cemented and other type of hip replacements. Total hip replacement (THR) failure scenarios include, among others, cement damage accumulation and the assessment of accurate stress and strain magnitudes at the cement mantle interfaces (stem-cement and cement-bone) can be used to predict mechanical failure. The aseptic loosening scenario in cemented hip replacements is currently not fully understood, and methods of evaluating medical devices must be developed to improve clinical performance. Different results and conclusions concerning the cement micro-cracking mechanism have been reported.The aim of this study was to verify the in vitro behavior of two cemented femoral stems with respect to fatigue crack formation. Fatigue crack damage was assessed at the medial, lateral, anterior and posterior sides of the Lubinus SPII and Charnley stems. All stems were loaded and tested in stair climbing fatigue loading during one million cycles at 2 Hz. After the experiments each implanted synthetic femur was sectioned and analyzed. We observed more damage (cracks per area) for the Lubinus SPII stem, mainly on the proximal part of the cement mantle. The micro-cracking formation initiated in the stem–cement interface and grew towards the direction of cortical bone of the femur.Overall, the cement–bone interface seems to be crucial for the success of the hip replacement. The Charnley stem provoked more damage on the cement–bone interface. A failure index (maximum length of crack/maximum thickness of cement) considered was higher for the cement–stem interface of the Lubinus SPII stem. For a cement mantle thickness higher than 5 mm, cracking initiated at the cement–bone interface and depended on the opening canal process (reaming procedure and instrumentation). The analysis also showed that fatigue-induced damage on the cement mantle, increasing proximally, and depended on the axial position of the stem. The cement thickness is an important factor for the success of THR and this study evidenced that cement thickness higher than 2 mm apparently does not affect the mechanical behavior of the cement mantel and induce more crack formation on the cement–bone interface.  相似文献   

10.

Background  

Slow crack growth can be described in a v (crack velocity) versus KI (stress intensity factor) diagram. Slow crack growth in ceramics is attributed to corrosion assisted stress at the crack tip or at any pre-existing defect in the ceramic. The combined effect of high stresses at the crack tip and the presence of water or body fluid molecules (reducing surface energy at the crack tip) induces crack propagation, which eventually may result in fatigue. The presence of a threshold in the stress intensity factor, below which no crack propagation occurs, has been the subject of important research in the last years. The higher this threshold, the higher the reliability of the ceramic, and consequently the longer its lifetime.  相似文献   

11.
This paper gives an insight about compression and tension cracks as encountered at a bone-cement interface. Within the context of continuum theory of fracture, an analytical solution is presented for the problem of a bimaterial interface edge crack under uniaxial tension or compression, assuming no tangential slip along the crack faces since cement pedicles penetrate into the cancellous bone several millimeters. Also essential to the solution are cohesive zone effects that account for a strengthening mechanism over the crack faces. The solution provides a methodological framework for quantifying the influence of the cohesive zone on the magnitude of the stress singularity. Mode I crack tip stress intensity factors are calculated at different stages of the loading and unloading phases under uniaxial tension or compression. Finally, an inelastic mechanism is presented that gives theoretical support to explain the formation of interfacial compression cracks, a phenomenon that was not previously appreciated and that arises from the rigid cement being forced into the more compliant cancellous bone.  相似文献   

12.
Percutaneous vertebroplasty (VP) is a minimally invasive procedure that is used to treat osteoporosis-induced vertebral compression fractures (OVCFs). Frequently observed complications are fractures of adjacent and augmented vertebrae. In the present work, mechanisms for these fractures are presented. Fresh 4-level osteoporotic thoracic motion segments were tested. Both ends of the specimen were mounted. The lower level of the free vertebra was compressively fractured and followed by an injection of a 3.5 mL of a PMMA bone cement. Three steps of fatigue loading (5 Hz for 5 h) were incrementally and vertically applied on the specimens from 650 N to 950 N to 1150 N. Specimens of intact, compressively fractured, cement augmented and post-fatigued loading were radiographed for the measurement of deformations of the vertebra, the canal, and the foramen. At the end of fatigue loading, the vertebrae were sliced for micro morphologic analysis. The largest height loss after fatigue loading was at the posterior region of the augmented vertebra. In the augmented vertebra, fissures were found along the bone-cement interface. These fissures split the cement and the trabeculae and propagated into the vertebrae and the endplates. The compactness ratio of the trabeculae region of the adjacent cranial vertebra was higher than that for intact and adjacent caudal ones. We attribute the fracture of the augmented vertebra, following simulated VP, to the initiation of fissures along the cement-bone interface, which, in turn, may be due to uneven deformation of the vertebra. Fracture of the adjacent cranial vertebra is attributed to collapse of its trabeculae.  相似文献   

13.

Bulk properties of cortical bone have been well characterized experimentally, and potent toughening mechanisms, e.g., crack deflections, have been identified at the microscale. However, it is currently difficult to experimentally measure local damage properties and isolate their effect on the tissue fracture resistance. Instead, computer models can be used to analyze the impact of local characteristics and structures, but material parameters required in computer models are not well established. The aim of this study was therefore to identify the material parameters that are important for crack propagation in cortical bone and to elucidate what parameters need to be better defined experimentally. A comprehensive material parameter study was performed using an XFEM interface damage model in 2D to simulate crack propagation around an osteon at the microscale. The importance of 14 factors (material parameters) on four different outcome criteria (maximum force, fracture energy, crack length and crack trajectory) was evaluated using ANOVA for three different osteon orientations. The results identified factors related to the cement line to influence the crack propagation, where the interface strength was important for the ability to deflect cracks. Crack deflection was also favored by low interface stiffness. However, the cement line properties are not well determined experimentally and need to be better characterized. The matrix and osteon stiffness had no or low impact on the crack pattern. Furthermore, the results illustrated how reduced matrix toughness promoted crack penetration of the cement line. This effect is highly relevant for the understanding of the influence of aging on crack propagation and fracture resistance in cortical bone.

  相似文献   

14.
This paper is concerned with the fracture mechanics of a bone-cement interface that includes a cohesive zone effect on the crack faces. This accounts for the experimentally observed strengthening mechanism due to the mechanical interlock between the crack faces. Edge crack models are developed where the cohesive zone is simulated by a continuous or a discrete distribution of linear or nonlinear springs. It is shown that the solution obtained by assuming a homogeneous material is fairly close to the exact solution for the bimaterial interface edge crack problem. On the basis of that approximation, the analysis is conducted for the problem of two interacting edge cracks, one at the interface, and the other one in the cement. The small crack that was observed to initiate in the cement, close to the bone-cement interface, does not affect much the mode I stress-intensity factor at the tip of the interface crack. However it may grow, leading to a catastrophic breakdown of the cement. The analysis and following discussion point out an interdependency between bone-cement interface strength and cement strength not previously appreciated. The suggested crack models provide a framework for quantifying the fracture mechanisms at the bone-cement interface.  相似文献   

15.
The "damage accumulation" phenomenon has not been quantitatively demonstrated in clinical cement mantles surrounding femoral hip stems. We stained transverse sections of 11 postmortem retrieved femoral hip components fixed with cement using fluorescent dye-penetrant and quantified cement damage, voids, and cement-bone interface gaps in epifluorescence and white light micrographs. Crack density (Cr.Dn), crack length-density (Cr.Ln.Dn), porosity, and cement-bone interface gap fraction (c/b-gap%) were calculated, normalized by mantle area. Multiple regression tests showed that cement damage (Cr.Ln.Dn. & Cr.Dn.) was significantly positively correlated (r(2)=0.98, p<0.001) with "duration of use" and body mass index ("BMI") but not cement mantle "porosity". There were significant interactions: "duration of use"*"BMI" was strongly predictive (p<0.005) of Cr.Dn.; and "duration of use"*"porosity" was predictive (p=0.04) of Cr.Ln.Dn. Stem related cracks accounted for approximately one fifth of Cr.Dn and one third of Cr.Ln.Dn. The mean c/b-gap% was 13.8% but it did not correlate (r(2)=0.01, p=0.8) with duration of use. We concluded that duration-dependent fatigue damage accumulation occurred during in vivo use. BMI strongly influenced cement crack length and the rate of new crack formation over time. Voids did not increase the rate of crack initiation but appeared to have promoted crack growth over time. Although not progressive, substantial bone resorption at the cement-bone interface appeared to be common.  相似文献   

16.
A mechanistic understanding of the role of bone quality on fracture processes is essential for determining the underlying causes of age-related changes in the mechanical response of the human bone. In this study, a previously developed cohesive finite element model was used to investigate the effects of age-related changes and the orientation of crack growth on the toughening behavior of human cortical bone. The change in the anisotropy of toughening mechanisms with age was also studied. Finite element method (FEM) simulations showed that the initiation toughness decreased by 3% and 8%/decade for transverse and longitudinal crack growth, respectively. In contrast, fracture resistance curve slope for transverse and longitudinal crack growth decreased by 2% and 3%/decade, respectively. Initiation fracture toughness values were higher for the transverse than for the longitudinal for a given age. On the other hand, propagation fracture toughness values were higher for longitudinal than for transverse crack growth for a given age. With respect to age, the toughness ratio for crack initiation decreased by 6%/decade, but that for propagation showed almost no change (less than 1%). In light of these findings, an analytical model evaluating the crack arresting feature of cement lines, is proposed to explain the factors that determine crack penetration into osteons or its deflection by cement lines.  相似文献   

17.
Knowledge of kinetics of fatigue crack growth of microcracks is important so as to understand the dynamics of bone adaptation, remodeling, and the etiology of fatigue-based failures of cortical bone tissue. In this respect, theoretical models (Taylor, J. Biomech., 31 (1998) 587-592; Taylor and Prendergast, Proc. Instn. Mech. Engrs. Part H 211 (1997) 369-375) of microcrack growth in cortical bone have predicted a decreasing microcrack growth rate with increasing microcrack length. However, these predictions have not been observed directly. This study investigated microcrack growth and arrest through observations of surface microcracks during cyclic loading (R=0.1, 50-80MPa) of human femoral cortical bone (male, n=4, age range: 37-40yr) utilizing a video microscopy system. The change in crack length and orientation of eight surface microcracks were measured with the number of fatigue cycles from four specimens. At the applied cyclic stresses, the microcracks propagated and arrested in generally less than 10,000 cycles. The fatigue crack growth rate of all microcracks decreased with increasing crack length following initial identification, consistent with theoretical predictions. The growth rate of the microcracks was observed to be in the range of 5x10(-5) to 5x10(-7)mmcycle(-1). In addition, many of the microcracks were observed not to grow beyond 150 microm and a cyclic stress intensity factor of 0.5MNm(-3/2). The results of this study suggest that cortical bone tissue may resist fracture at the microscale by deceleration of fatigue crack growth and arrest of microcracks.  相似文献   

18.
Premature fracture of the bone plate caused by fatigue crack is the main failure mode in treating femoral shaft fracture. In order to improve the durability of the plate, this study proposed a crack attraction hole (CAH) to retard the crack propagation based on the fracture mechanics. In this paper, a numerical model of the femoral fracture internal fixation system was constructed, in which the femur was developed using a validated simplified model. First, the fatigue crack initiation location was defined at the stress concentration through static analysis. Next, with the joint simulation method of Franc3D and ABAQUS, the fatigue crack path in the bone plate was predicted. Meanwhile, the Paris parameters of Ti-6Al-4V obtained through experiments were encoded into Franc3D to calculate the crack propagation life. Finally, we considered the influence of CAH designs with different relative vertical distances (2.0, 3.0, and 4.0 mm) and diameters (1.5, 2.0, and 2.5 mm) on the crack propagation path and life of the bone plate. Additionally, the effects of all CAH configurations on the biomechanical performance of the bone plate fixation system were evaluated. The results indicated that the fatigue crack growth path in the bone plate is comparable to a straight line, and the crack growth rate significantly increases when the crack tip reaches the outer boundary of the plate. The findings suggest that the addition of CAH in the bone plate will lead to the deflection of the crack path and increase the fatigue life. Equally important, the improvement of the fatigue life was positively correlated with the diameter of CAH and negatively correlated with the relative vertical distance. In addition, the biomechanical properties of the bone plate system were slightly affected by CAH, substantiating the feasibility of this method. Finally, the comparative analysis verified that a CAH with a relative vertical distance of 3 mm and a diameter of 2 mm exhibited superior improvement in the comprehensive performance on the bone plate.  相似文献   

19.
Peak stress levels predicted in finite element analysis (FEA) usually depend on mesh density, due to singular points in the model. In an earlier study, an FEA algorithm was developed to simulate the damage accumulation process in the cement mantle around total hip replacement (THR) implants. It allows cement crack formation to be predicted, as a function of the local cement stress levels. As the simulation is driven by mesh-dependent peak stresses, predicted crack formation rates are also likely to be mesh dependent. The aim of this study was to evaluate the mesh dependence of the predicted crack formation process, and to present a method to reduce the mesh dependence. Crack-propagation experiments were simulated. Experimental specimens, representing transverse slices of cemented THR reconstructions, were subjected to cyclic torsional loading. Crack development around the corners of the stem was monitored. The experiments were simulated using three meshes with increasing levels of mesh refinement. Crack locations and orientations were accurately predicted, and were virtually independent of the level of mesh refinement. However, the experimental crack propagation rates were overestimated considerably, increasing with mesh refinement. To eliminate the effect of stress singularities around the corners of the stem, a stress averaging algorithm was applied in the simulation. This algorithm redistributed the stresses by weighted spatial averaging. When damage accumulation was computed based on averaged stresses, the crack propagation rates predicted were independent of the level of mesh refinement. The critical distance, a parameter governing the effect of the averaging algorithm, was optimized such that the predicted crack propagation rates accurately corresponded to the experimental ones. These results are important for the validity and standardization of pre-clinical testing methods for orthopaedic implants.  相似文献   

20.
Both creep and crack growth contribute to the reduction in modulus associated with fatigue loading in bone. Here we simulate crack growth and subsequent strut failure in fatigue in an open-cell, three-dimensional Voronoi structure which is similar to that of low density, osteoporotic bone. The model indicates that sequential failure of struts leads to a precipitous drop in modulus: the failure of 1% of the struts leads to about a 10% decrease in modulus. A parametric study is performed to assess the influence of normalized stress range, relative density, initial crack size, crack shape and cell geometry on the fatigue life. The fatigue life is most sensitive to the relative density and the initial crack length. The results lead to a quantitative expression for the fatigue life associated with crack growth. Data for the fatigue life of trabecular bone are compared with the crack growth model described in this paper as well as with a previous model for creep of a three-dimensional Voronoi structure. In our models, creep dominates the fatigue behavior in low cycle fatigue while crack growth dominates in high cycle fatigue, consistent with previous observations on cortical bone. The large scatter in the trabecular bone fatigue data make it impossible to identify a transition between creep dominated fatigue and crack growth dominated fatigue. The parametric study of the crack growth model indicates that variations in relative density among specimens, initial crack size within trabeculae and crack shape could easily produce such variability in the test results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号