首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Over the past decade cyclooxygenase-2-derived prostaglandins have been implicated in the development and progression of many types of cancer. Recently our laboratory has shown that treatment with prostaglandin E2 (PGE2) induces increased proliferation, migration, and invasiveness of colorectal carcinoma cells (Sheng, H., Shao, J., Washington, M. K., and DuBois, R. N. (2001) J. Biol. Chem. 276, 18075-18081). The stimulatory effects of PGE2 were dependent upon the activation of the phosphatidylinositol 3-kinase/Akt pathway. However, the exact signaling cascade responsible for phosphatidylinositol 3-kinase/Akt activation by PGE2 remains poorly defined. In the present study, we demonstrate that the PGE2-induced migration and invasion occurs via rapid transactivation and phosphorylation of the epidermal growth factor receptor (EGFR). Within minutes following treatment, PGE2 induces the activation of Akt. This effect was completely abolished by EGFR-specific tyrosine kinase inhibitors providing evidence for the role of the EGFR in this response. The rapid transactivation of the EGFR occurs via an intracellular Src-mediated event but not through the release of an extracellular epidermal growth factor-like ligand. EGFR transactivation was also observed in vivo by the direct comparison of normal and malignant human colorectal samples. These results suggest that in developing colonic carcinomas, the early effects of cyclooxygenase-2-derived PGE2 are in part mediated by the EGFR, and this transactivation is responsible for subsequent down-stream effects including the stimulation of cell migration and invasion.  相似文献   

5.
Prostaglandin (PG) E(2) (PGE(2)) plays a predominant role in promoting colorectal carcinogenesis. The biosynthesis of PGE(2) is accomplished by conversion of the cyclooxygenase (COX) product PGH(2) by several terminal prostaglandin E synthases (PGES). Among the known PGES isoforms, microsomal PGES type 1 (mPGES-1) and type 2 (mPGES-2) were found to be overexpressed in colorectal cancer (CRC); however, the role and regulation of these enzymes in this malignancy are not yet fully understood. Here, we report that the cyclopentenone prostaglandins (CyPGs) 15-deoxy-Delta(12,14)-PGJ(2) and PGA(2) downregulate mPGES-2 expression in the colorectal carcinoma cell lines Caco-2 and HCT 116 without affecting the expression of any other PGES or COX. Inhibition of mPGES-2 was subsequently followed by decreased microsomal PGES activity. These effects were mediated via modulation of the cellular thiol-disulfide redox status but did not involve activation of the peroxisome proliferator-activated receptor gamma or PGD(2) receptors. CyPGs had antiproliferative properties in vitro; however, this biological activity could not be directly attributed to decreased PGES activity because it could not be reversed by adding PGE(2). Our data suggest that there is a feedback mechanism between PGE(2) and CyPGs that implicates mPGES-2 as a new potential target for pharmacological intervention in CRC.  相似文献   

6.
Acute cholecystitis is associated with increased gallbladder prostanoid formation and the inflammatory changes and prostanoid increases can be inhibited by nonsteroidal anti-inflammatory agents. Recent information indicates that prostanoids are produced by two cyclooxygenase (COX) enzymes, COX-1 and COX-2. The purpose of this study was to determine the COX enzymatic pathway in gallbladder mucosal cells involved in the production of prostanoids stimulated by inflammatory agents. Human gallbladder mucosal cells were isolated from cholecystectomy specimens and maintained in cell culture and studied in comparison with cells from a well differentiated gallbladder mucosal carcinoma cell line. COX enzymes were evaluated by Western immunoblotting and prostanoids were measured by ELISA. Unstimulated and stimulated cells were exposed to specific COX-1 and COX-2 inhibitors. In both normal and transformed cells constitutive COX-1 was evident and in gallbladder cancer cells lysophosphatidyl choline (LPC) induced the formation of constitutive COX-1 enzyme. While not detected in unstimulated normal mucosal cells and cancer cells, COX-2 protein was induced by both lipopolysaccharide (LPS) and LPC. Unstimulated gallbladder mucosal cells and cancer cells produced prostaglandin E2 (PGE2) and prostacyclin (6-keto prostaglandin F1alpha, 6-keto PGF1alpha) continuously. In freshly isolated normal gallbladder mucosal cells, continuously produced 6 keto PGF1alpha was inhibited by both COX-1 and COX-2 inhibitors while PGE2 levels were not affected. Both LPS and LPC stimulated PGE2 and 6 keto PGF1alpha formation were blocked by COX-2 inhibitors in freshly isolated, normal human gallbladder mucosal cells and in the gallbladder cancer cells. The prostanoid response of gallbladder cells stimulated by proinflammatory agents is inhibited by COX-2 inhibitors suggesting that these agents may be effective in treating the pain and inflammation of gallbladder disease.  相似文献   

7.
Hepatic stellate cells (HSC) are central to liver fibrosis. The eicosanoid pathway and cyclooxygenase-2 (COX-2) may be an important signaling mechanism in HSC. We investigated the role of COX-2, prostaglandin E(2) (PGE(2)) and prostaglandin I(2) (PGI(2)) in proliferation of LI90, an immortalized cell line of HSC. Our results showed that COX-2 was upregulated by platelet-derived growth factor (PDGF), a mitogen in HSC. COX-2 was responsible for the production of PGE(2) and PGI(2) in PDGF-stimulated LI90 cells. Furthermore, we demonstrated that COX-2 and PGE(2) mediated the proliferative response of LI90 to PDGF while synthetic analogue of PGI(2) exhibited anti-proliferative effect. Our findings suggest complex interactions of prostaglandins in liver fibrogenesis. In vivo studies using animal models are needed to elucidate the effect of COX-2 inhibition by non-steroidal anti-inflammatory drugs or COX-2 inhibitor in hepatic fibrosis.  相似文献   

8.
Many actions of cyclooxygenase-2 in cellular dynamics and in cancer   总被引:84,自引:0,他引:84  
Cyclooxygenase-2 (COX-2) is the inducible isoform of cyclooxygenase, the enzyme that catalyzes the rate-limiting step in prostaglandin synthesis from arachidonic acid. Various prostaglandins are produced in a cell type-specific manner, and they elicit cellular functions via signaling through G-protein coupled membrane receptors, and in some cases, through the nuclear receptor PPAR. COX-2 utilization of arachidonic acid also perturbs the level of intracellular free arachidonic acid and subsequently affects cellular functions. In a number of cell and animal models, induction of COX-2 has been shown to promote cell growth, inhibit apoptosis and enhance cell motility and adhesion. The mechanisms behind these multiple actions of COX-2 are largely unknown. Compelling evidence from genetic and clinical studies indicates that COX-2 upregulation is a key step in carcinogenesis. Overexpression of COX-2 is sufficient to cause tumorigenesis in animal models and inhibition of the COX-2 pathway results in reduction in tumor incidence and progression. Therefore, the potential for application of non-steroidal anti-inflammatory drugs as well as the recently developed COX-2 specific inhibitors in cancer clinical practice has drawn tremendous attention in the past few years. Inhibition of COX-2 promises to be an effective approach in the prevention and treatment of cancer, especially colorectal cancer.  相似文献   

9.
The activation of peroxisome proliferator activated receptor gamma (PPARgamma) may play a role in the control of colorectal carcinogenesis. The expression of PPARgamma was examined by Western blotting in human colorectal tumors and matched normal adjacent tissues, as well as in various colorectal carcinoma cell lines. In the tissues, the expression of PPARgamma was elevated in tumors relative to the adjacent normal tissues. Each colorectal carcinoma cell line expressed PPARgamma. The ability of various eicosanoids to bind PPARgamma in colorectal carcinoma cells was investigated using luciferase reporter assays. The well-known PPARgamma ligands, troglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2) strongly induced PPARgamma binding activity. Products of lipoxygenases displayed moderate binding activity, while other prostaglandins and fatty acids displayed little or no reporter activation. The activation of PPARgamma by 13(S)-HODE, the major metabolite of 15-lipoxygenase-1 from linoleic acid, was concentration dependent reaching maximum at 10 micro M (35-fold activation). The endogenous production of 13(S)-HODE by expression of 15-LO-1 did not activate PPARgamma. The ability of various nonsteroidal anti-inflammatory drugs (NSAIDs) to induce PPARgamma activation was also evaluated. The conventional NSAIDs that inhibit both cyclooxygenases (COX-1 and COX-2) also induced PPARgamma binding activity. In general, however, neither COX-1- nor COX-2-specific inhibitors induced the activation of PPARgamma. Taken together, the metabolites of 15-lipoxygenase and the conventional NSAIDs were confirmed as exogenous ligands for PPARgamma in colorectal carcinoma cells.  相似文献   

10.
Cyclooxygenase (COX) converts arachidonic acid to prostaglandin (PG) H2, which is further metabolized to various prostaglandins, prostacyclin and thromboxane A2. COX exists in at least two different isoforms. COX-1 is constitutively expressed, whereas COX-2 is induced by proinflammatory stimuli. Prostaglandin E2 is a major metabolite of COX activation. In order to compare the activity of target ligands and COX inhibitors on PGE2 synthesis and release, the responsiveness of several cell lines to the calcium ionophore A23187, bacterial lipopolysaccharide (LPS), nonsteroidal anti-inflammatory drugs (NSAIDs), and the glucocorticoid, dexamethasone, were investigated. For intracellular measurements, the culture supernatant was aspirated, and the cells were thoroughly washed and lysed with dodecyltrimethylammonium bromide. Intracellular and secreted PGE2 were measured with an enzyme immunoassay. A23187 and LPS increased intracellular PGE2 in a dose-dependent manner. Kinetic experiments with A23187-stimulated mouse 3T3 fibroblast cells revealed a distinct biphasic response in COX activity. In the presence of NSAIDs or dexamethasone, there was a dose-dependent inhibition in intracellular PGE2 with A23187-stimulated 3T3 cells. Inhibitory studies demonstrated an apparent increased sensitivity of COX activity to the action of inhibitors when measuring intracellular PGE2 compared with using cell culture supernatants. Indeed, intracellular PGE2 levels were comprehensively reduced in the presence of low concentrations of inhibitor. The utilization of cell culture lysates and, in particular, measurement of intracellular PGE2 should prove useful for identifying new COX inhibitors.  相似文献   

11.
Nonsteroidal anti-inflammatory drugs (NSAIDs) can decrease the risk of colorectal cancer; however, it has not been established if this effect is solely through their ability to inhibit cyclooxygenase (COX). In this study the effects of indomethacin, a potent NSAID and nonselective COX inhibitor, was examined in LS174T human colon cancer cells. These cells were found to express EP2 prostanoid receptors, but not the EP1, EP3 or EP4 subtypes. Pretreatment of LS174T cells with indomethacin produced a complete inhibition of prostaglandin E(2) (PGE(2)) stimulated cyclic AMP (cAMP) formation in a dose dependent manner with an IC(50) of 21 microM. Interestingly, the inhibition of PGE(2)-stimulated cAMP formation by indomethacin was accompanied by a decrease in EP2 mRNA expression and by a decrease in the whole cell specific binding of [(3)H]PGE(2). Thus, treatment of LS174T cells with indomethacin causes a down regulation of EP2 prostanoid receptors expression that may be independent of COX inhibition.  相似文献   

12.
Colorectal cancer is a major cause of mortality and whilst up to 80% of sporadic colorectal tumours are considered preventable, trends toward increasing obesity suggest the potential for a further increase in its worldwide incidence. Novel methods of colorectal cancer prevention and therapy are therefore of considerable importance. Non-steroidal anti-inflammatory drugs (NSAIDs) are chemopreventive against colorectal cancer, mainly through their inhibitory effects on the cyclooxygenase isoform COX-2. COX enzymes represent the committed step in prostaglandin biosynthesis and it is predominantly increased COX-2-mediated prostaglandin-E2 (PGE2) production that has a strong association with colorectal neoplasia, by promoting cell survival, cell growth, migration, invasion and angiogenesis. COX-1 and COX-2 inhibition by traditional NSAIDs (for example, aspirin) although chemopreventive have some side effects due to the role of COX-1 in maintaining the integrity of the gastric mucosa. Interestingly, the use of COX-2 selective NSAIDs has also shown promise in the prevention/treatment of colorectal cancer while having a reduced impact on the gastric mucosa. However, the prolonged use of high dose COX-2 selective inhibitors is associated with a risk of cardiovascular side effects. Whilst COX-2 inhibitors may still represent viable adjuvants to current colorectal cancer therapy, there is an urgent need to further our understanding of the downstream mechanisms by which PGE2 promotes tumorigenesis and hence identify safer, more effective strategies for the prevention of colorectal cancer. In particular, PGE2 synthases and E-prostanoid receptors (EP1-4) have recently attracted considerable interest in this area. It is hoped that at the appropriate stage, selective (and possibly combinatorial) inhibition of the synthesis and signalling of those prostaglandins most highly associated with colorectal tumorigenesis, such as PGE2, may have advantages over COX-2 selective inhibition and therefore represent more suitable targets for long-term chemoprevention. Furthermore, as COX-2 is found to be overexpressed in cancers such as breast, gastric, lung and pancreatic, these investigations may also have broad implications for the prevention/treatment of a number of other malignancies.  相似文献   

13.
There is an autocrine relationship between eicosanoid and cytokine synthesis, with the ratio of prostaglandin E2 (PGE2)/thromboxane A2 (TXA2) being one of the determinants of the level of cytokine synthesis. In monocytes, cyclooxygenase type 1 (COX-1) activity appears to favor TXA2 production and COX-2 activity appears to favor PGE2 production. This has led to speculation regarding possible linkage of COX isozymes with PGE and TXA synthase. We have studied the kinetics of PGE2 and TXA2 synthesis under conditions that rely on COX-1 or -2 activity. With small amounts of endogenously generated prostaglandin H2 (PGH2), TXA2 synthesis was greater than PGE2. With greater amounts of endogenously generated PGH2, PGE2 synthesis was greater than TXA2. Also, TXA synthase was saturated at lower substrate concentrations than PGE synthase. This pattern was observed irrespective of whether PGH2 was produced by COX-1 or COX-2 or whether it was added directly. Furthermore, the inhibition of eicosanoid production by the action of nonsteroidal anti-inflammatory drugs or by the prevention of COX-2 induction with the p38 mitogen-activated protein kinase inhibitor SKF86002 was greater for PGE2 than for TXA2. It is proposed that different kinetics of PGE synthase and TXA synthase account for the patterns of production of these eicosanoids in monocytes under a variety of experimental conditions. These properties provide an alternative explanation to notional linkage or compartmentalization of COX-1 or -2 with the respective terminal synthases and that therapeutically induced changes in eicosanoid ratios toward predominance of TXA2 may have unwanted effects in long-term anti-inflammatory and anti-arthritic therapy.  相似文献   

14.
Regulation of chondrogenesis and chondrocyte maturation by prostaglandins has been a topic of interest during recent years. Particular focus on this area derives from the realization that inhibition of prostaglandin synthesis with non-steroidal anti-inflammatory drugs could impact these cartilage-related processes which are important in skeletal development and are recapitulated during bone healing either post-trauma or post-surgery. In addition to reviewing the relevant literature focused on prostaglandin synthesis and signaling through the G-protein coupled EP receptors, we present novel findings that establish the expression profile of EP receptors in chondroprogenitors and chondrocytes. Further, we begin to examine the signaling that may be involved with the transduction of PGE2 effects in these cells. Our findings suggest that EP2 and EP4 receptor activation of cAMP metabolism may represent a central axis of events that facilitate the impact of PGE2 on the processes of mesenchymal stem cell commitment to chondrogenesis and ultimate chondrocyte maturation.  相似文献   

15.
Epidemiological studies have suggested that the long-term use of nonsteroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX) activity moderates the onset or progression of Alzheimer's disease (AD). Thus it has been suggested that prostaglandin E(2) (PGE(2)), a major end-product of COX, may play a pathogenic role in AD, but the involvement of PGE synthase (PGES), a terminal enzyme downstream from COX, has not been fully elucidated. To examine the involvement in AD pathology of microsomal PGES-1 (mPGES-1), a PGES enzyme, we here prepared primary cerebral neuronal cells from the cerebri of wild-type and mPGES-1-deficient mice and then treated them with β-amyloid (Aβ) fragment 31-35 (Aβ(31-35)), which represents the shortest sequence of native Aβ peptide required for neurotoxicity. Treatment of wild-type neuronal cells with Aβ(31-35) induced mPGES-1 gene expression and PGE(2) production, followed by significant apoptotic cell death, but apoptosis was not induced in mPGES-1-deficient cells. Furthermore, the combined treatment of Aβ(31-35) and PGE(2) induced apoptosis in mPGES-1-deficient neuronal cells. These results indicated that mPGES-1 is induced during Aβ-mediated neuronal cell death and is involved in Aβ-induced neurotoxicity associated with AD pathology.  相似文献   

16.
The objective of the present investigation was to examine the influence of inhibition of renal prostaglandin synthesis on the renal clearance of inorganic sulfate, an electrolyte involved in the biotransformation of both exogenous and endogenous substrates. Homeostasis of inorganic sulfate is maintained predominantly by renal reabsorption in the proximal tubule. Using a crossover study design, the renal clearance of sulfate was assessed in conscious female Lewis rats during control periods and following the infusion of two structurally dissimilar nonsteroidal anti-inflammatory drugs, ibuprofen (IBU) and indomethacin (INDO). Animals were infused with IBU or INDO to achieve steady state concentrations of 59 +/- 8 micrograms/ml (mean +/- SD) of IBU and 22 +/- 3 micrograms/ml of INDO. At these serum concentrations, IBU and INDO produced greater than 80% decrease in the urinary excretion of prostaglandin (PG) E2. Treatment with either IBU or INDO significantly increased the renal clearance of sulfate, but did not alter the glomerular filtration rate as assessed by creatinine clearance. The role of prostaglandins in the effects of IBU and INDO on sulfate homeostasis was investigated by examining the influence of concomitant intraarterial PGE2 administration (infusion of 0.1 micrograms/min) on nonsteroidal anti-inflammatory drug-induced alterations in sulfate renal clearance. Although PGE2 alone did not significantly alter the renal clearance of inorganic sulfate or that of creatinine, the PGE2 infusion abolished the effects of IBU on sulfate renal clearance. Concomitant PGE2 administration also significantly increased the sulfate reabsorption rate in INDO-treated animals; other parameters were not significantly changed, although the fractional reabsorption of sulfate tended to increase (P = 0.17). The reason for the less pronounced effect on PGE2 on the INDO-sulfate interaction is as yet unknown, but may be partly due to additional mechanisms involved in the INDO-induced alterations in sulfate clearance. The results of these studies suggest that prostaglandin inhibition represents one mechanism whereby IBU can alter the renal clearance of inorganic sulfate.  相似文献   

17.
In this study, using rat carrageenin-induced pleurisy, we found that treatment of rats with either indomethacin or NS-398 suppressed the pleurisy at 2 h but significantly exacerbated this reaction at 48 h. Exacerbated inflammation was associated with reduced prostaglandin D(2) levels, decreased heat shock factor 1 (HSF1) activation, reduced hsp72 expression and increased activation of nuclear factor kappaB (NF-kappaB). Replacement of cyclopentenone prostaglandins by treating rats with either prostaglandin J(2) or prostaglandin D(2) reversed the exacerbating effects of cyclooxygenase inhibitors leading to the resolution of the reaction. In conclusion, we demonstrate that cyclopentenone prostaglandins may act as anti-inflammatory mediators by inducing in inflammatory cells HSF1-dependent hsp72 expression and NF-kappaB inhibition, two crucial events for the remission of inflammation.  相似文献   

18.
A role for prostaglandins in the mechanism of B cell tolerance induction in normal adult mouse spleen cells was examined. Two inhibitors of the cyclooxygenase pathway of arachidonic acid metabolism, indomethacin and acetylsalicylic acid, abrogated hapten-specific B cell tolerance induction by trinitrophenyl-human gamma-globulin. Tolerance was fully restored by the addition of prostaglandin E2 (PGE2) at a concentration of greater than or equal to 6 nM. T cell-depleted spleen cells produced comparable amounts of PGE2 in culture, indicating that the tolerance promoting activity of PGE2 occurred with physiologically relevant concentrations. Depletion and reconstitution experiments indicated that macrophages in the spleen cell preparations completely accounted for both PGE2 production and the effects of indomethacin and acetylsalicylic acid on B cell tolerance induction. The macrophage product interleukin 1 (IL 1) was also found to alter B cell susceptibility to tolerance induction. Thus, human IL 1 containing monocyte supernatants and purified IL 1 were found to interfere with B cell tolerance induction when added to macrophage- and T cell-depleted splenic B cells. Tolerance was restored in such cultures by the addition of 10 nM PGE2. These experiments demonstrate that within mixed lymphoid populations macrophages through the release of mediators modulate B cell susceptibility to tolerance induction.  相似文献   

19.
The production of prostaglandins by phagocytic cells of the thymic reticulum in culture (P-TR) was studied by using high pressure liquid chromatography and radioimmunoassay. Radioimmunologic determinations showed that thromboxane B2 (TXB2), prostaglandin E2 (PGE2), and 6-keto-prostaglandin F1 alpha (6 keto-PGF1 alpha) were the major compounds released into the culture medium, whereas prostaglandin F2 alpha (PGF2 alpha) was only a minor component. Indomethacin and dexamethasone exerted a similar pattern of differential inhibition of the secretion of prostanoids. PGE2 and 6-keto PGF1 alpha productions were markedly decreased by these anti-inflammatory drugs, whereas those of TXB2 and PGF2 alpha were not or were only slightly affected. Experiments performed with an antiglucocorticoid compound (RU 38486) showed that the steroid-induced inhibition of prostanoid secretion is a classical receptor-mediated action. These results demonstrated that phagocytic cells of the thymic reticulum, which resemble the thymic interdigitating cells, produce several types of prostaglandins. Because it has been described that P-TR regulate thymocyte proliferation in vitro via the secretion of both interleukin 1 and PGE2, these results suggest that anti-inflammatory agents may be able to modulate the thymic microenvironment and, consequently, thymocyte proliferation.  相似文献   

20.
Epidemiological studies demonstrate that the incidence and mortality rates of colorectal cancer in women are lower than in men. However, it is unknown if 17β-estradiol treatment is sufficient to inhibit prostaglandin E2 (PGE2)-induced cellular motility in human colon cancer cells. Upregulation of cyclooxygenase-2 (COX-2) is reported to associate with the development of cancer cell mobility, metastasis, and subsequent malignant tumor. After administration of inhibitors including LY294002 (Akt activation inhibitor), U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), or QNZ (NFκB inhibitor), we found that PGE2 treatment increases COX-2 via Akt and ERK1/2 pathways, thus promoting cellular motility in human LoVo cancer cells. We further observed that 17β-estradiol treatment inhibits PGE2-induced COX-2 expression and cellular motility via suppressing activation of Akt and ERK1/2 in human LoVo cancer cells. Collectively, these results suggest that 17β-estradiol treatment dramatically inhibits PGE2-induced progression of human LoVo colon cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号