首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behavior is a manifestation of temporally and spatially defined neuronal activities. To understand how behavior is controlled by the nervous system, it is important to identify the neuronal substrates responsible for these activities, and to elucidate how they are integrated into a functional circuit. I introduce a novel and general method to conditionally perturb anatomically defined neurons in intact Drosophila. In this method, a temperature‐sensitive allele of shibire (shits1) is overexpressed in neuronal subsets using the GAL4/UAS system. Because the shi gene product is essential for synaptic vesicle recycling, and shits1 is semidominant, a simple temperature shift should lead to fast and reversible effects on synaptic transmission of shits1 expressing neurons. When shits1 expression was directed to cholinergic neurons, adult flies showed a dramatic response to the restrictive temperature, becoming motionless within 2 min at 30°C. This temperature‐induced paralysis was reversible. After being shifted back to the permissive temperature, they readily regained their activity and started to walk in 1 min. When shits1 was expressed in photoreceptor cells, adults and larvae exhibited temperature‐dependent blindness. These observations show that the GAL4/UAS system can be used to express shits1 in a specific subset of neurons to cause temperature‐dependent changes in behavior. Because this method allows perturbation of the neuronal activities rapidly and reversibly in a spatially and temporally restricted manner, it will be useful to study the functional significance of particular neuronal subsets in the behavior of intact animals. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 81–92, 2001  相似文献   

2.
Rikhy R  Ramaswami M  Krishnan KS 《Genetics》2003,165(3):1243-1253
Rapidly reversible, temperature-sensitive (ts) paralytic mutants of Drosophila have been useful in delineating immediate in vivo functions of molecules involved in synaptic transmission. Here we report isolation and characterization of orangi (org), an enhancer of shibire (shi), a ts paralytic mutant in Drosophila dynamin. org is an allele of the stress sensitive B (sesB) locus that encodes a mitochondrial adenine nucleotide translocase (ANT) and results in a unique ts paralytic behavior that is accompanied by a complete loss of synaptic transmission in the visual system. sesB(org) reduces the restrictive temperature for all shi(ts) alleles tested except for shi(ts1). This characteristic allele-specific interaction of sesB(org) with shi is shared by abnormal wing discs (awd), a gene encoding nucleoside diphosphate kinase (NDK). sesB(org) shows independent synergistic interactions, an observation that is consistent with a shared pathway by which org and awd influence shi function. Genetic and electrophysiological analyses presented here, together with the observation that the sesB(org) mutation reduces biochemically assayed ANT activity, suggest a model in which a continuous mitochondrial ANT-dependent supply of ATP is required to sustain NDK-dependent activation of presynaptic dynamin during a normal range of synaptic activity.  相似文献   

3.
The microbrain of the silkmoth, Bombyx mori, is a model system for analyzing the neural mechanisms underlying stimulus-driven behavior, and numerous studies using physiological and morphological methods have accumulated. However, one of the limitations of this system is a lack of methodology for labeling specific subsets of neurons. Targeted gene expression with the GAL4/UAS system, which was recently developed, may overcome this disadvantage. To test the GAL4/UAS system in the silkmoth brain, we generated two GAL4 driver lines in which GAL4 expression was under the control of either the bombyxin or prothoracicotropic hormone (PTTH) promoter. Crosses of moths from these lines with a UAS-GFP line showed that green fluorescent protein (GFP) was exclusively expressed in bombyxin or PTTH neurosecretory brain cells. Using these lines, we developed a visually guided method to selectively insert an electrode into and intracellulary stain GFP-expressing cells using fluorescence as a landmark. This work provides a novel method to visualize specific subsets of neurons in the silkmoth brain and to observe detailed structures in a single identified neuron from different individuals.  相似文献   

4.
5.
In both vertebrates and invertebrates, Transient Receptor Potential (TRP) channels are expressed in sensory neurons and mediate environmental stimuli such as light, sound, temperature, and taste. Some of these channels, however, are expressed only in the brain and their functions remain incompletely understood. Using the GAL4/UAS binary system with a line in which the GAL4 had been knocked into the trpA1 locus in Drosophila, we recently reported new insights into TRPA1 localization and function, including its expression in approximately 15% of all circadian neurons. TRPA1 is expressed in lateral posterior neurons (LPNs), which are known to be highly sensitive to entrainment by temperature cycles. Here, I used the bacterial sodium channel, NaChBac, to examine the effects of altering the electrical properties of trpA1 neurons on circadian rhythms. My results indicate that circadian activity of the flies in the morning, daytime, and evening was affected in a temperature-dependent manner following TRPA1 neuronal activation. Remarkably, TRPA1 neuron activation in flies kept at 18°C impacted the morning peak of circadian activity even though TRPA1 is not expressed in morning cells. Taken together, these results suggest that the activation of TRPA1-expressing neurons may differentially coordinate light/dark circadian entrainment, depending on the temperature.  相似文献   

6.
Optogenetics is a powerful tool that enables the spatiotemporal control of neuronal activity and circuits in behaving animals. Here, we describe our protocol for optical activation of neurons in Drosophila larvae. As an example, we discuss the use of optogenetics to activate larval nociceptors and nociception behaviors in the third-larval instar. We have previously shown that, using spatially defined GAL4 drivers and potent UAS (upstream activation sequence)-channelrhodopsin-2∷YFP transgenic strains developed in our laboratory, it is possible to manipulate neuronal populations in response to illumination by blue light and to test whether the activation of defined neural circuits is sufficient to shape behaviors of interest. Although we have only used the protocol described here in larval stages, the procedure can be adapted to study neurons in adult flies--with the caveat that blue light may not sufficiently penetrate the adult cuticle to stimulate neurons deep in the brain. This procedure takes 1 week to culture optogenetic flies and ~1 h per group for the behavioral assays.  相似文献   

7.
The Drosophila larva is widely used for studies of neuronal development and function, yet little is known about the neuronal basis of locomotion in this model organism. Drosophila larvae crawl over a plain substrate by performing repetitive waves of forward peristalsis alternated by brief episodes of head swinging and turning. To identify sets of central and peripheral neurons required for the spatial or temporal pattern of larval locomotion, we blocked neurotransmitter release from defined populations of neurons by targeted expression of tetanus toxin light chain (TeTxLC) with the GAL4/UAS system. One hundred fifty GAL4 lines were crossed to a UAS-TeTxLC strain and a motion-analysis system was used to identify larvae with abnormal movement patterns. Five lines were selected that show discrete locomotor defects (i.e., increased turning and pausing) and these defects are correlated with diverse sets of central neurons. One line, 4C-GAL4, caused an unusual circling behavior that is correlated with approximately 200 neurons, including dopaminergic and peptidergic interneurons. Expression of TeTxLC in all dopaminergic and serotonergic but not in peptidergic neurons, caused turning deficits that are similar to those of 4C-GAL4/TeTxLC larvae. The results presented here provide a basis for future genetic studies of motor control in the Drosophila larva.  相似文献   

8.
Drosophila temperature-sensitive rolling blackout (rbo(ts) ) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rbo(S358A) mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase domain is critical for RBO essential function. Likewise, the rbo(S358A) mutant cannot provide any rescue of endocytic blockade in rbo(ts) Garland cells, showing that the lipase domain is indispensable for non-neuronal endocytosis. In contrast, rbo(ts) conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rbo(S358A) mutant, showing that the RBO lipase domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbo(ts) and the well-characterized dynamin GTPase conditional shibire (shi(ts1)) mutant. In both non-neuronal cells and neuronal synapses, shi(ts1); rbo(ts) phenocopies shi(ts1) endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase domain-dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity.  相似文献   

9.
Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibire(ts1) (shi(ts1)) transgene (a temperature-sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31-32°C). Among larvae with abnormal locomotion or sensory-motor responses, some had very small numbers of GFP-labeled temperature-sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.  相似文献   

10.
The cardiac neuronal hierarchy can be represented as a redundant control system made up of spatially distributed cell stations comprising afferent, efferent, and interconnecting neurons. Its peripheral and central neurons are in constant communication with one another such that, for the most part, it behaves as a stochastic control system. Neurons distributed throughout this hierarchy interconnect via specific linkages such that each neuronal cell station is involved in temporally dependent cardio-cardiac reflexes that control overlapping, spatially organized cardiac regions. Its function depends primarily, but not exclusively, on inputs arising from afferent neurons transducing the cardiovascular milieu to directly or indirectly (via interconnecting neurons) modify cardiac motor neurons coordinating regional cardiac behavior. As the function of the whole is greater than that of its individual parts, stable cardiac control occurs most of the time in the absence of direct cause and effect. During altered cardiac status, its redundancy normally represents a stabilizing feature. However, in the presence of regional myocardial ischemia, components within the intrinsic cardiac nervous system undergo pathological change. That, along with any consequent remodeling of the cardiac neuronal hierarchy, alters its spatially and temporally organized reflexes such that populations of neurons, acting in isolation, may destabilize efferent neuronal control of regional cardiac electrical and/or mechanical events.  相似文献   

11.
Karpova AY  Tervo DG  Gray NW  Svoboda K 《Neuron》2005,48(5):727-735
Inducible and reversible silencing of selected neurons in vivo is critical to understanding the structure and dynamics of brain circuits. We have developed Molecules for Inactivation of Synaptic Transmission (MISTs) that can be genetically targeted to allow the reversible inactivation of neurotransmitter release. MISTs consist of modified presynaptic proteins that interfere with the synaptic vesicle cycle when crosslinked by small molecule "dimerizers." MISTs based on the vesicle proteins VAMP2/Synaptobrevin and Synaptophysin induced rapid ( approximately 10 min) and reversible block of synaptic transmission in cultured neurons and brain slices. In transgenic mice expressing MISTs selectively in Purkinje neurons, administration of dimerizer reduced learning and performance of the rotarod behavior. MISTs allow for specific, inducible, and reversible lesions in neuronal circuits and may provide treatment of disorders associated with neuronal hyperactivity.  相似文献   

12.
We present a pilot enhancer trap screen using GAL4 to drive expression of upstream activator sequence (UAS)-linked transgenes in expression patterns dictated by endogenous enhancers in zebrafish. The patterns presented include expression in small subsets of neurons throughout the larval brain, which in some cases persist into adult. Through targeted photoconversion of UAS-driven Kaede and variegated expression of UAS-driven GFP in single cells, we begin to characterize the cellular components of labeled circuits.  相似文献   

13.
Drosophila larval locomotion is a splendid model system in developmental and physiological neuroscience, by virtue of the genetic accessibility of the underlying neuronal components in the circuits1-6. Application of optogenetics7,8 in the larval neural circuit allows us to manipulate neuronal activity in spatially and temporally patterned ways9-13. Typically, specimens are broadly illuminated with a mercury lamp or LED, so specificity of the target neurons is controlled by binary gene expression systems such as the Gal4-UAS system14,15. In this work, to improve the spatial resolution to "sub-genetic resolution", we locally illuminated a subset of neurons in the ventral nerve cord using lasers implemented in a conventional confocal microscope. While monitoring the motion of the body wall of the semi-intact larvae, we interactively activated or inhibited neural activity with channelrhodopsin16,17 or halorhodopsin18-20, respectively. By spatially and temporally restricted illumination of the neural tissue, we can manipulate the activity of specific neurons in the circuit at a specific phase of behavior. This method is useful for studying the relationship between the activities of a local neural assembly in the ventral nerve cord and the spatiotemporal pattern of motor output.  相似文献   

14.
Modification of proteins with the lipid palmitate regulates targeting to specific vesicular compartments and synaptic membranes. Mounting evidence indicates that this lipid modification modulates diverse aspects of neuronal development and synaptic transmission. In particular, palmitoylation regulates the function of proteins that control neuronal differentiation, axonal pathfinding and filopodia formation. In addition, trafficking of numerous proteins associated with synaptic vesicle release machinery requires protein palmitoylation. Remarkably, reversible palmitoylation of specific scaffolding proteins and signaling molecules dynamically regulates ion channel clustering and synaptic strength. The recent discovery of enzymes that palmitoylate specific subsets of synaptic proteins suggests that this process is tightly controlled in neurons.  相似文献   

15.
Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibire(ts), namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1-10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds.  相似文献   

16.
Giorgi C  Yeo GW  Stone ME  Katz DB  Burge C  Turrigiano G  Moore MJ 《Cell》2007,130(1):179-191
Proper neuronal function and several forms of synaptic plasticity are highly dependent on precise control of mRNA translation, particularly in dendrites. We find that eIF4AIII, a core exon junction complex (EJC) component loaded onto mRNAs by pre-mRNA splicing, is associated with neuronal mRNA granules and dendritic mRNAs. eIF4AIII knockdown markedly increases both synaptic strength and GLUR1 AMPA receptor abundance at synapses. eIF4AIII depletion also increases ARC, a protein required for maintenance of long-term potentiation; arc mRNA, one of the most abundant in dendrites, is a natural target for nonsense-mediated decay (NMD). Numerous new NMD candidates, some with potential to affect synaptic activity, were also identified computationally. Two models are presented for how translation-dependent decay pathways such as NMD might advantageously function as critical brakes for protein synthesis in cells such as neurons that are highly dependent on spatially and temporally restricted protein expression.  相似文献   

17.
Dynamin is a GTPase protein that is essential for clathrin-mediated endocytosis of synaptic vesicle membranes. The Drosophila dynamin mutation shi(ts1) changes a single residue (G273D) at the boundary of the GTPase domain. In cell fractionation of homogenized fly heads without monovalent cations, all dynamin was in pellet fractions and was minimally susceptible to Triton-X extraction. Addition of Na(+) or K(+) can extract dynamin to the cytosolic (supernatant) fraction. The shi(ts1) mutation reduced the sensitivity of dynamin to salt extraction compared with other temperature-sensitive alleles or wild type. Sensitivity to salt extraction in shi(ts1) was enhanced by GTP and nonhydrolyzable GTP-gammaS. The shi(ts1) mutation may therefore induce a conformational change, involving the GTP binding site, that affects dynamin aggregation. Temperature-sensitive shibire mutations are known to arrest endocytosis at restrictive temperatures, with concomitant accumulation of presynaptic collared pits. Consistent with an effect upon dynamin aggregation, intact shi(ts1) flies recovered much more slowly from heat-induced paralysis than did other temperature-sensitive shibire mutants. Moreover, a genetic mutation that lowers GTP abundance (awd(msf15)), which reduces the paralytic temperature threshold of other temperature-sensitive shibire mutations that lie closer to consensus GTPase motifs, did not reduce the paralytic threshold of shi(ts1). Taken together, the results may link the GTPase domain to conformational shifts that influence aggregation in vitro and endocytosis in vivo, and provide an unexpected point of entry to link the biophysical properties of dynamin to physiological processes at synapses.  相似文献   

18.
The male-specific Fruitless proteins (FruM) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened ~1000 GAL4 lines, using assays for general courtship, male-male interactions, and male fertility to determine the phenotypes resulting from the GAL4-driven inhibition of FruM expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups on the basis of additional neurobiological and behavioral criteria. For example, in some lines, restoration of FruM expression in cholinergic neurons restores fertility or reduces male-male courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately, whereas in other lines this phenotype results from apparent habituation deficits. Inhibition of ectopic FruM expression in females, in populations of neurons where FruM is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous FruM expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with FruM expression in many regions of the nervous system, suggesting likely redundant FruM-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation.  相似文献   

19.
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity and behavior, and its malfunction underlies many neurodevelopmental and psychiatric disorders. However, the molecular mechanisms that control dendritic spine morphogenesis have only recently emerged. We summarize recent work that has revealed an important connection between calcium/calmodulin-dependent kinases (CaMKs) and guanine-nucleotide-exchange factors (GEFs) that activate the small GTPase Rac (RacGEFs) in controlling dendritic spine morphogenesis. These two groups of molecules function in neurons as a unique signaling cassette that transduces calcium influx into small GTPase activity and, thence, actin reorganization and spine morphogenesis. Through this pathway, CaMKs and RacGEFs amplify calcium signals and translate them into spatially and temporally regulated structural remodeling of dendritic spines.  相似文献   

20.
GAL4/UAS系统在转基因技术中的应用研究进展   总被引:1,自引:0,他引:1  
GAL4/UAS系统是一种转基因技术体系,其原理是利用特定的启动子或增强子,以组织特异性的方式激活酵母转录激活子GAL4的表达,GAL4又以同样的方式引起GAL4反应元件(UAS)-靶基因的转录。GAL4/UAS系统的关键点在于:GAL4基因和UAS-靶基因分别存在于两个转基因系中。GAL4转基因系中有转录激活子,但没有靶基因;在UAS-靶基因系中,转录激活子不存在,因而靶基因处于沉默状态,只有将GAL4转基因系与UAS-靶基因系进行杂交,才可能产生表达靶基因的后代。本文综述了GAL4/UAS系统的建立及其研究应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号