首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycoprotein gp50 is a neurone-specific, granule cell-enriched glycoprotein that is also a major component of isolated synaptic membranes. Here, we describe the use of a monoclonal antibody, mab SM gp50, to study the postnatal development of gp50 in the brain of normal and thyroid-deficient rats. Radioimmunoassay, enzyme-linked immunosorbent assay, and Western blotting show that gp50 is not detectable in brain until postnatal day 4 (P4) in both forebrain and cerebellum. In forebrain, the rate of increase of gp50 levels is maximal between P12 and P20. It is somewhat later in cerebellum, where peak levels are attained between P30 and P35. Immunocytochemical studies show little detectable gp50-like immunoreactivity before P16, and the staining is still weak, relative to adult tissue, at P25. The intense staining of the granule cell layer characteristic of adult cerebellum predominantly appears after P25. Development of gp50 is severely retarded in the cerebellum of thyroid-deficient rats, particularly during the second and third postnatal weeks. However, by the fourth postnatal week, gp50 levels in normal and hypothyroid animals are comparable. The results indicate that significant alterations in the pattern of gp50 expression continue to occur at a late stage of cerebellar development. In particular, the increase in immunocytochemical staining of the granule cells after P25 is striking in that by this time most major events associated with cerebellar development are essentially complete.  相似文献   

2.
Abstract: Antibodies to the phosphoprotein B-50 of rat brain were used to trace cross-reacting brain proteins of vertebrates. With the SDS-gel-immunoperoxidase method, a cross-reacting protein (CP) of apparent Mr 53,000 was demonstrated in the homogenate and the synaptic plasma membrane fraction of bovine brain. Sequence 1–24 of adrenocorticotropin (ACTH1-24) (10−5 M and 10−4 M ) inhibited endogenous phosphorylation of CP in synaptic plasma membranes. The protein was partially characterized and purified to homogeneity from bovine brain by procedures previously described for rat B-50. CP was enriched in ammonium sulfate precipitated protein (ASP) fractions and phosphorylated by an endogenous protein kinase. Two-dimensional gel analysis of bovine and rat ASP showed that the cross-reacting protein had an isoelectric point less acidic than B-50. Limited proteolysis by Staphylococcus aureus protease yielded a "peptide map" analogous to B-50. Two major fragments of Mr 30,000 and 17,000 were produced. In addition, CP exhibited other similarities to rat B-50: phosphorylation by rat brain protein kinase C, microheterogeneity observed after isoelectric focusing, and possibly degradation by endogenous proteolysis. Cross-reaction of proteins in brain homogenates of other mammalian species and of chicken was demonstrated: the Mr of the proteins ranged from 47,000 to 53,000. We conclude that (1) the cross-reacting bovine protein is a "B-50 protein," and (2) the M r of the "B-50 protein" varies from species to species.  相似文献   

3.
A glutamate-binding protein from rat brain synaptic plasma membranes has been purified to apparent homogeneity. This protein has a Mr of 14,300 based on amino acid and carbohydrate analyses. The protein is enriched with tryptophan residues, which contribute substantially to its hydrophobic nature. It also has a relatively high content of acidic amino acids, which determine is low isoelectric point (4.82). The protein exhibits either a single, high-affinity class of sites for L-[3H]glutamate binding (KD = 0.13 microM) when binding is measured at low protein concentrations, or two classes of sites with high (KD = 0.17 microM) and low affinities (KD = 0.8 microM) when binding is measured at high protein concentrations. These observations suggest preferential binding of L-glutamate to a self-associating form of the protein. The displacement of protein-bound L-[3H]glutamic acid by other neuroactive amino acids has characteristics similar to those observed for displacement of L-glutamate from membrane binding sites. Chemical modification of the cysteine and arginine residues results in an inhibition of glutamate binding activity. The possible function of this protein in the physiologic glutamate receptor complex of neuronal membranes is discussed.  相似文献   

4.
Molecular Properties of the Growth-Associated Protein GAP-43 (B-50)   总被引:2,自引:3,他引:2  
The protein that has been identified in different contexts as growth-associated protein (GAP)-43, GAP-48, protein 4, B-50, F-1 gamma 5, and pp46, has been implicated in neural development, axonal regeneration, and the modulation of synaptic function. The present study investigated various properties of this protein (designated here as GAP/B-50), including its correct molecular weight and possible polymeric structure. GAP/B-50 was purified to greater than 90% homogeneity using an alkaline extraction procedure followed by a two-stage separation on a size-exclusion HPLC column. The equivalence of the purified protein to the B-50 phosphoprotein was confirmed by peptide digests, comigration, immunostaining, and amino acid composition. On a series of sodium dodecyl sulfate-polyacrylamide gels the apparent molecular weight of the protein was seen to vary inversely with the concentration of acrylamide in the gels. Using these data in the method of Ferguson, the molecular weight of GAP/B-50 was calculated to be 32.8 kilodaltons (kD), considerably lower than the previously reported values of 43-67 kD. The low molecular weight of the protein in the presence of detergent was confirmed by density centrifugation. In the absence of detergent, however, the protein was found to be part of a polymeric structure whose retention time by size-exclusion chromatography indicated a size of 124 kD; this property was also confirmed by density centrifugation under nondetergent conditions. These data suggest the possibility that the native form of GAP/B-50 in the presynaptic membrane may be a tetramer of four identical subunits.  相似文献   

5.
Abstract: Antibodies to the plant glycoprotein horseradish peroxidase (HRP) are used extensively to identify neurons in Drosophila and other insects. We are interested in characterizing the gene product(s) recognized by anti-HRP antibodies because it may be important for nervous system function and/or development. Here we identify and purify from adult Drosophila heads an anti-HRP-reactive Mr 42K glycoprotein that is likely to be the major contributor to neuronal specific anti-HRP staining. Several different monoclonal antibodies to the purified 42K glycoprotein recognize up to three proteins with distinct mobilities between Mr 38K and 42K that vary as a function of developmental age. We have collectively named these components Nervana (nerve antigen), because the monoclonal antibodies also specifically stain cultured neurons and embryonic nervous system with a pattern indistinguishable from anti-HRP staining. Western blots indicate the presence of immunologically similar proteins in a wide variety of insect species and in nac (neurally altered carbohydrate) mutant Drosophila flies that lack anti-HRP staining in adult nervous system. It should now be possible to undertake a full biochemical and functional characterization of Nervana in Drosophila .  相似文献   

6.
The biochemistry and functional neurochemistry of the synaptosomal plasma membrane phosphoprotein B-50 (GAP-43) are reviewed. The protein is putatively involved in seemingly diverse functions within the nervous system, including neuronal development and regeneration, synaptic plasticity, and formation of memory and other higher cognitive behaviors. There is a considerable amount of information concerning the spatial and temporal localization of B-50 (GAP-43) in adult, fetal, and regenerating nervous tissue but far less is known about the physical chemistry and biochemistry of the protein. Still less information is available about posttranslational modifications of B-50 (GAP-43) that may be the basis of neurochemical mechanisms that could subsequently permit a variety of physiological functions. Hence, consideration is given to several plausible roles for B-50 (GAP-43) in vivo, which are discussed in the context of the cellular localization of the protein, significant posttranslational enzymes, and regulatory proteins, including protein kinases, phosphoinositides, calmodulin, and proteases.  相似文献   

7.
The neuronal tissue-specific protein kinase C (PKC) substrate B-50 can be dephosphorylated by endogenous protein phosphatases (PPs) in synaptic plasma membranes (SPMs). The present study characterizes membrane-associated B-50 phosphatase activity by using okadaic acid (OA) and purified 32P-labeled substrates. At a low concentration of [gamma-32P]ATP, PKC-mediated [32P]phosphate incorporation into B-50 in SPMs reached a maximal value at 30 s, followed by dephosphorylation. OA, added 30 s after the initiation of phosphorylation, partially prevented the dephosphorylation of B-50 at 2 nM, a dose that inhibits PP-2A. At the higher concentration of 1 microM, a dose of OA that inhibits PP-1 as well as PP-2A, a nearly complete blockade of B-50 dephosphorylation was seen. Heat-stable PP inhibitor-2 (I-2) also inhibited dephosphorylation of B-50. The effects of OA and I-2 on B-50 phosphatase activity were additive. Endogenous PP-1- and PP-2A-like activities in SPMs were also demonstrated by their capabilities of dephosphorylating [32P]phosphorylase a and [32P]casein. With these exogenous substrates, sensitivities of the membrane-bound phosphatases to OA and I-2 were found to be similar to those of purified forms of these enzymes. These results indicate that PP-1- and PP-2A-like enzymes are the major B-50 phosphatases in SPMs.  相似文献   

8.
Inhibition of the phosphorylation of the synaptic plasma membrane (SPM) protein B50 by [D-Trp8]-somatostatin in vitro is time-dependent. Increasing the time of incubation of hippocampal synaptic plasma membranes with the peptide from 15 sec to 30 min prior to addition of 7.5 μM [γ-32Ps]ATP results in a complete reduction of B50 phosphorylation. Incubation of synaptic plasma membranes for 30 min in the absence of peptide does not alter basal B50 phosphorylation. Neither ACTH nor β-endorphin produces similar effects—inhibition of B50 phosphorylation by ACTH is maximal at 15 sec and β-endorphin produces only a small inhibition, even after 30 min. [D-Trp8]-somatostatin is not activating a membrane-bound protease, since maximal inhibition of B50 phosphorylation by the peptide is seen in the presence of leupeptin or bacitracin. Hippocampal synaptic plasma membranes contain protein phosphatase activity. Assays of B50 phosphorylation in synaptic plasma membranes done under conditions that favor either net phosphorylation or dephosphorylation are consistent with inhibition of protein phosphatase activity by [D-Trp8]-somatostatin. This evidence suggests that [D-Trp8]-somatostatin interacts with SPM binding sites in the hippocampus, which may alter the activity of an endogenous protein phosphatase to determine the degree of B50 phosphorylation.  相似文献   

9.
10.
Abstract

The gel to fluid phase transition or ordered to disordered phase transition observed in biological membranes are simulated by using constant energy Molecular Dynamics. The surface part of the membrane is modelled as a two-dimensional matrix formed by the head groups of the phospholipid molecules. Head molecules which are modelled as three spheres fused with three force centers, interact with each other via van der Waals and Coulomb type interactions. The -so called- impurity or foreign molecule embedded in the surface represents the protein type molecule which is present in biological membranes and control its activity. It is modelled as a pentagon having one force centers in each corner. It also interacts with the surface molecules again via van der Waals and Coulomb type interactions. The surface density is kept constant in the simulations of the systems with or without impurity. Structural and orientational changes due to impurity were observed and proved by monitoring two-dimensional order parameter. It has been shown that melting of the surface or breakage of the ordering of the surface molecules becomes easier and ordered to disordered phase transition temperature was lowered by 100 K if the impurity is present.  相似文献   

11.
In continuing studies on smooth microsomal and synaptic membranes from rat forebrain, we compared the binding properties of opiate receptors in these two discrete subcellular populations. Receptors in both preparations were saturable and stereospecific. Scatchard and Hill plots of [3H]naloxone binding to microsomes and synaptic membranes were similar to plots for crude membranes. Both synaptic membranes and smooth microsomes contained similar enrichments of low- and high-affinity [3H]naloxone binding sites. No change in the affinity of the receptors was observed. When [3H]D-ala2-D-leu5-enkephalin was used as ligand, microsomes possessed 60% fewer high-affinity sites than did synaptic membranes, and a large number of low-affinity sites. In competition binding experiments microsomal opiate receptors lacked the sensitivity to (guanyl-5'-yl)imidodiphosphate [Gpp(NH)p] shown by synaptic and crude membrane preparations. In this respect microsomal opiate receptors resembled membranes that were experimentally guanosine triphosphate (GTP)-uncoupled with N-ethylmaleimide (NEM). Agonist binding to microsomal and synaptic membrane opiate receptors was decreased by 100 mM NaCl. Like NEM-treated crude membranes, microsomal receptors were capable of differentiating agonist and antagonists in the presence of 100 mM NaCl. MnCl2 (50-100 microM) reversed the effects of 100 mM NaCl and 50 microM GTP on binding of the mu-specific agonist [3H]dihydromorphine in both membrane populations. Since microsomal receptors are unable to distinguish agonists from antagonists in the presence of Gpp(NH)p, they are a convenient source of guanine nucleotide-uncoupled opiate receptors.  相似文献   

12.
Abstract: Human eyes contain an Mr 135K retinol-binding protein that is analogous to interstitial retinol-binding protein (IRBP) in the subretinal space of bovine eyes. It is a glycoprotein, because it binds 125I-concanavalin A, 125I-wheat germ agglutinin and 125I- Lens culinaris hemagglutinin. It does not bind Ricinus communis agglutinin I. After desialation, it binds Ricinus communis agglutinin I, but loses its capacity to bind wheat germ agglutinin. These observations, coupled with the known specificities of these lectins, suggest that at least one of the oligosaccharide chains is a sialated, biantennary complex type containing fucose. Both by direct analysis of dissected ocular tissues and by immunocytochemistry it was shown that human interstitial retinol binding protein is an extracellular protein that is confined predominantly to the subretinal space. Monkey retinas incubated in vitro in medium containing [3H]leucine were shown to synthesize and secrete this protein into the medium, a conclusion that was confirmed by immunoprecipitation with an immunoglobulin fraction prepared from rabbit antibovine IRBP serum. Virtually no other labeled proteins were detectable in the medium. It is concluded that interstitial retinol-binding protein meets many of the requirements for a putative transport protein implicated in the transfer of retinol between the pigment epithelium and retina during the visual cycle, and that the neural retina may play an important role in regulating its amount in the subretinal space.  相似文献   

13.
The effects of various ions on L-glutamate (L-Glu) binding sites (Na+-dependent, Cl(-)-dependent, and Cl(-)-independent) in synaptic plasma membranes (SPM) isolated from rat spinal cord and forebrain were examined. Cl(-)-dependent binding sites were over twofold higher in spinal cord (Bmax = 152 +/- 34 pmol/mg protein) as compared to forebrain SPM (Bmax = 64 +/- 12 pmol/mg protein). Na+-dependent binding, on the other hand, was nearly sixfold less in spinal cord (Bmax = 74 +/- 10 pmol/mg protein) compared to forebrain SPM (408 +/- 26 pmol/mg protein). Uptake of L-Glu (Na+-dependent) was also eightfold less in the P2 fraction from spinal cord relative to forebrain (Vmax of 2.89 and 22.3 pmol/mg protein/min, respectively). The effects of Na+, K+, NH4+, and Ca2+ on L-Glu binding sites were similar in both regions of the CNS. In addition, in spinal cord membranes, Br-, I-, and NO3- were equivalent to Cl- in their capacity to stimulate L-Glu binding, whereas F- and CO3- were less effective. Cl(-)-dependent L-Glu binding in spinal cord membranes consisted of two distinct sites. The predominant site (74% of the total) had characteristics similar to the Cl(-)-dependent binding site in forebrain membranes [i.e., Ki values of 5.7 +/- 1.4 microM and 119 +/- 38 nM for 2-amino-4-phosphonobutyric acid (AP4) and quisqualic acid, (QUIS), respectively]. The other Cl(-)-dependent site was unaffected by AP4 but was blocked by QUIS (Ki = 14.2 +/- 4.8 microM).  相似文献   

14.
Hookworms of the genus Uncinaria have been widely reported from juvenile pinnipeds, however investigations of their systematics has been limited, with only two species described, Uncinaria lucasi from northern fur seals (Callorhinus ursinus) and Uncinaria hamiltoni from South American sea lions (Otaria flavescens). Hookworms were sampled from these hosts and seven additional species including Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), South American fur seals (Arctocephalus australis), Australian fur seals (Arctocephalus pusillus), New Zealand sea lions (Phocarctos hookeri), southern elephant seals (Mirounga leonina), and the Mediterranean monk seal (Monachus monachus). One hundred and thirteen individual hookworms, including an outgroup species, were sequenced for four genes representing two loci (nuclear ribosomal DNA and mitochondrial DNA). Phylogenetic analyses of these sequences recovered seven independent evolutionary lineages or species, including the described species and five undescribed species. The molecular evidence shows that U. lucasi parasitises both C. ursinus and E. jubatus, whereas U. hamiltoni parasitises O. flavescens and A. australis. The five undescribed hookworm species were each associated with single host species (Z. californianus, A. pusillus, P. hookeri, M. leonina and M. monachus). For parasites of otarids, patterns of Uncinaria host-sharing and phylogenetic relationships had a strong biogeographic component with separate clades of parasites from northern versus southern hemisphere hosts. Comparison of phylogenies for these hookworms and their hosts suggests that the association of U. lucasi with northern fur seals results from a host-switch from Steller sea lions. Morphometric data for U. lucasi shows marked host-associated size differences for both sexes, with U. lucasi individuals from E. jubatus significantly larger. This result suggests that adult growth of U. lucasi is reduced within the host species representing the more recent host–parasite association. Intraspecific host-induced size differences are inconsistent with the exclusive use of morphometrics to delimit and diagnose species of Uncinaria from pinnipeds.  相似文献   

15.
Arylsulfatase G (ARSG) is a recently identified lysosomal sulfatase that was shown to be responsible for the degradation of 3-O-sulfated N-sulfoglucosamine residues of heparan sulfate glycosaminoglycans. Deficiency of ARSG leads to a new type of mucopolysaccharidosis, as described in a mouse model. Here, we provide a detailed molecular characterization of the endogenous murine enzyme. ARSG is expressed and proteolytically processed in a tissue-specific manner. The 63-kDa single-chain precursor protein localizes to pre-lysosomal compartments and tightly associates with organelle membranes, most likely the endoplasmic reticulum. In contrast, proteolytically processed ARSG fragments of 34-, 18-, and 10-kDa were found in lysosomal fractions and lost their membrane association. The processing sites and a disulfide bridge between the 18- and 10-kDa chains could be roughly mapped. Proteases participating in the processing were identified as cathepsins B and L. Proteolytic processing is dispensable for hydrolytic sulfatase activity in vitro. Lysosomal transport of ARSG in the liver is independent of mannose 6-phosphate, sortilin, and Limp2. However, mutation of glycosylation site N-497 abrogates transport of ARSG to lysosomes in human fibrosarcoma cells, due to impaired mannose 6-phosphate modification.  相似文献   

16.
Abstract: The distribution of a glycoprotein component of the muscle dystrophin complex, β-dystroglycan, has been determined in subcellular fractions of adult rat forebrain. The results show that β-dystroglycan is enriched in several membrane fractions, including synaptic membranes, but in marked contrast to dystrophin is not detectable in the postsynaptic density fraction. The antiserum also recognises a second molecular species of apparent molecular mass of 164 kDa which is highly enriched in the postsynaptic density fraction. Preabsorption of the antiserum with the antigen (a 22-mer peptide corresponding to the C-terminal sequence of rabbit skeletal muscle β-dystroglycan) abolished reactivity against both β-dystroglycan and the 164-kDa postsynaptic density-enriched protein, confirming that the two species are immunologically related. Enzymatic removal of N-linked oligosaccharide lowered the apparent molecular mass of β-dystroglycan by 3 kDa but did not alter the mass of the 164-kDa species.  相似文献   

17.
We studied the molecular mechanism of noradrenaline release from the presynaptic terminal and the involvement of the protein kinase C substrate B-50 (GAP-43) in this process. To gain access to the interior of the presynaptic terminal, we searched for conditions to permeate rat brain synaptosomes by the bacterial toxin streptolysin O. A crude synaptosomal/mitochondrial preparation was preloaded with [3H]noradrenaline. After permeation with 0.8 IU/ml streptolysin O, noradrenaline efflux could be induced in a concentration-dependent manner by elevating the free Ca2+ concentration from 10(-8) to 10(-5) M. Efflux of the cytosolic marker protein lactate dehydrogenase was not affected by this increase in Ca2+. Ca2(+)-induced efflux of noradrenaline was largely dependent on the presence of exogenous ATP. Changing the Na+/K+ ratio in the buffer did not affect Ca2(+)-induced noradrenaline release. Release of noradrenaline could also be evoked by phorbol esters, indicating the involvement of protein kinase C. Ca2(+)- and phorbol ester-induced release were not additive at higher phorbol ester concentrations (greater than 10(-7) M). We compared the sensitivities of Ca2(+)- and phorbol ester-induced release of noradrenaline to the protein kinase inhibitors H-7 and polymyxin B and to antibodies raised against synaptic protein kinase C substrate B-50. Ca2(+)-induced release was inhibited by B-50 antibodies and polymyxin B, but not by H-7; phorbol ester-induced release was inhibited by polymyxin B and by H-7, but only marginally by antibodies to B-50.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The genome of the Leishmania parasite contains two classes of myosin. Myosin-XXI, seemingly the only myosin isoform expressed in the protozoan parasite, has been detected in both the promastigote and amastigote stages of the Leishmania life cycle. It has been suggested to perform a variety of functions, including roles in membrane anchorage, but also long-range directed movements of cargo. However, nothing is known about the biochemical or mechanical properties of this motor. Here we designed and expressed various myosin-XXI constructs using a baculovirus expression system. Both full-length (amino acids 1-1051) and minimal motor domain constructs (amino acids 1-800) featured actin-activated ATPase activity. Myosin-XXI was soluble when expressed either with or without calmodulin. In the presence of calcium (pCa 4.1) the full-length motor could bind a single calmodulin at its neck domain (probably amino acids 809-823). Calmodulin binding was required for motility but not for ATPase activity. Once bound, calmodulin remained stably attached independent of calcium concentration (pCa 3-7). In gliding filament assays, myosin-XXI moved actin filaments at ~15 nm/s, insensitive to both salt (25-1000 mm KCl) and calcium concentrations (pCa 3-7). Calmodulin binding to the neck domain might be involved in regulating the motility of the myosin-XXI motor for its various cellular functions in the different stages of the Leishmania parasite life cycle.  相似文献   

19.
20.
Fusion of the viral and host cell membranes is a necessary first step for infection by enveloped viruses and is mediated by the envelope glycoprotein. The transmembrane subunits from the structurally defined “class I” glycoproteins adopt an α-helical “trimer-of-hairpins” conformation during the fusion pathway. Here, we present our studies on the envelope glycoprotein transmembrane subunit, GP2, of the CAS virus (CASV). CASV was recently identified from annulated tree boas (Corallus annulatus) with inclusion body disease and is implicated in the disease etiology. We have generated and characterized two protein constructs consisting of the predicted CASV GP2 core domain. The crystal structure of the CASV GP2 post-fusion conformation indicates a trimeric α-helical bundle that is highly similar to those of Ebola virus and Marburg virus GP2 despite CASV genome homology to arenaviruses. Denaturation studies demonstrate that the stability of CASV GP2 is pH dependent with higher stability at lower pH; we propose that this behavior is due to a network of interactions among acidic residues that would destabilize the α-helical bundle under conditions where the side chains are deprotonated. The pH-dependent stability of the post-fusion structure has been observed in Ebola virus and Marburg virus GP2, as well as other viruses that enter via the endosome. Infection experiments with CASV and the related Golden Gate virus support a mechanism of entry that requires endosomal acidification. Our results suggest that, despite being primarily arenavirus like, the transmembrane subunit of CASV is extremely similar to the filoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号