首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectrin loss during in vitro red cell lysis   总被引:1,自引:0,他引:1  
Spectrin was extracted from washed erythrocyte ghosts in 1 mM EDTA buffer (pH 8.0) and purified to homogeneity by gel filtration. Anti-human spectrin was raised in rabbits. Specificity of the antibody was demonstrated by immunodiffusion, immunoelectrophoresis and immunofluorescent techniques. Membrane-free hemolysate prepared by lysing red cells in 5 mM phosphate buffer (pH 8.0) for variable intervals (5--60 min) at 4 degrees C was found to contain spectrin identifiable by immunodiffusion, immunoelectrophoresis, immunofluorescence and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Spectrin was demonstrable in ultracentrifuged membrane-free hemolysate and, in progressively decreasing amounts, in membrane washes. Membrane-free hemolysate contained more spectrin when erythrocytes were lysed for 60 min than for 5 min. The data indicate that a significant amount of spectrin is detached from the membrane following sysis in hypotonic buffer for different time intervals. Spectrin lost in this manner might be part of spectrin attached to the lipid bilayer.  相似文献   

2.
Summary— The membrane skeleton, responsible for shape and mechanical properties of the red cell, was purified by the Triton extraction procedure in presence of 5 mM, 150 mM or 600 mM NaCl. The proportion of spectrin, protein 4.1 and actin present in erythrocyte skeletons does not depend on the molarity of NaCl used. In contrast ankyrin, protein band 3 and protein 4.2 are removed from skeletons as the ionic strength increased. Solubilization assays of membrane skeletons were used to study protein interactions inside the skeleton. Solubilization was performed by Tris, a non-selective disruptive reagent, or by p-mercuribenzene sulfonic acid (PMBS), which principally release spectrin and actin. Tris action was assessed by calculation of the percentage of solubilized proteins, which increased proportionally with Tris molarity. PMBS action was kinetically determined as the decrease in skeleton turbidity. With these two reagents, we observed a lower dissociation of skeletons prepared with high ionic strength buffer. Erythrocyte pretreatment with okadaic acid, an inhibitor of serine-threonine phosphatases, revealed a phosphorylation-induced skeleton gelation and a better resistance to Tris-solubilization.  相似文献   

3.
The morphology and functional state of red blood cells (RBCs) mainly depends on the configuration of the spectrin network, which can be broken under the influence of intoxication because of oxidation processes in the cells. Measurement of these processes is a complex problem. The most suitable and prospective method that resolves this problem is atomic force microscopy (AFM). We used AFM to study the changes in the spectrin matrix and RBC morphology during oxidation processes caused by ultraviolet (UV) irradiation in RBC suspension. The number of discocytes decreased from 98% (in control) to 12%. We obtained AFM images of the spectrin matrix in RBC ghosts. Atomic force microscopy allows for the direct observation and quantitative measurement of the disturbances in the structure of the spectrin matrix during oxidation processes in RBCs. The typical section size of the spectrin network changed from approximately 80 to 200 nm (in control) to 600 nm and even to 1000 nm after UV irradiation. An AFM study showed that incubation of RBCs with Cytoflavin® after UV irradiation preserved the forms of RBCs almost at control levels; 89% of the cells remained as discocytes. To quantify the intensity of the oxidation‐reduction processes, the percentage of haemoglobin derivatives was measured. The content of methaemoglobin varied in the range of 1% to 70% during the experiments. These evidence‐based studies are important for the fundamental research of interactions during redox processes in RBCs at the molecular level.  相似文献   

4.
We attached paraformaldehyde-fixed human erythrocyte ghosts to coated coverslips and sheared them to expose the cytoskeleton. Quick-freeze, deep-etch, rotary-replication, or tannic acid/osmium fixation and plastic embedding revealed the cytoskeleton as a dense network of intersecting straight filaments. Previous negative stain studies on spread skeletons found 5-6 spectrin tetramers intersecting at each actin oligomer, with an estimated 250 such intersections/microns 2 of membrane. In contrast, we found 3-4 filaments at each intersection and approximately 400 intersections/microns 2 of membrane. Immunogold labeling verified that the filaments were spectrin, but their lengths (29-37 nm) were approximately one-third that of extended spectrin dimers. The length and diameter of the filaments were sufficient to accommodate spectrin dimers, but not spectrin tetramers. Our results suggest that, in situ, spectrin dimers may associate as hexamers and octamers, rather than tetramers. We present several explanations that can reconcile our observations on intact cytoskeletons with previous reports on spread material. Extracting sheared ghosts with solutions of low ionic strength removed the cytoskeleton to reveal projections from the cytoplasmic surface of the membrane. These projections contained band 3, as shown by immunogold labeling, and they aggregated to a similar extent as intramembrane particles (IMP) when the cytoskeleton was removed, suggesting a direct relationship between these structures. Quantification indicated a stoichiometry of 2 IMP for each cytoplasmic projection. Cytoplasmic projections presumably contain other proteins besides band 3 since further treatment with high ionic strength solutions extracts peripheral proteins and reduces the diameter of projections by approximately 3 nm.  相似文献   

5.
Actin was isolated from erythrocyte ghosts. It is identical to muscle actin in its molecular weight, net charge, ability to polymerize into filaments with the double helical morphology, and its decoration with heavy meromyosin (HMM). when erythrocyte ghosts are incubated in 0.1 mM EDTA, actin and spectrin are solubilized. Spectrin has a larger molecular weight than muscle myosin. When salt is added to the EDTA extract, a branching filamentous polymer is formed. However, when muscle actin and the EDTA extract are mixed together in the presence of salt, the viscosity achieved is less than the viscosity of the solution if spectrin is omitted. Thus, spectrin seems to inhibit the polymerization of actin. If the actin is already polymerized, the addition of spectrin increases the viscosity of the solution, presumably by cross-linking the actin filaments. The addition of HMM of trypsin to erythrocyte ghosts results in filament formation in situ. These agents apparently act by detaching erythrocyte actin from spectrin, thereby allowing the polmerization of one or both proteins to occur. Since filaments are not present in untreated erythrocyte ghosts, we conclude that erythrocyte actin and spectrin associate to form an anastomosing network beneath the erythrocyte membrane. This network presumably functions in restricting the lateral movement of membrane-penetrating particles.  相似文献   

6.
Temperature transitions of spectrin in solution and in human erythrocyte membranes are recorded in the region t greater than 40 degrees C by irreversible changes in protein fluorescence spectra. Structural changes are completed 20 min after the sample incubation at an increased temperature. Both for isolated spectrin and for erythrocyte ghosts the temperature of half-transition is 46 +/- 1 degree C. There is no transition in the membranes after the removal of spectrin. Transitions in erythrocyte ghosts and in spectrin solution disappear at pH 5 when spectrin is in an aggregated state. Spectrin is suggested to be responsible for the transitions at 50 degrees C; its state in the cells areas more thermostable than in isolated membranes.  相似文献   

7.
Remodeling the shape of the skeleton in the intact red cell.   总被引:1,自引:0,他引:1       下载免费PDF全文
The role of the membrane skeleton in determining the shape of the human red cell was probed by weakening it in situ with urea, a membrane-permeable perturbant of spectrin. Urea by itself did not alter the biconcave disk shape of the red cell; however, above threshold conditions (1.5 M, 37 degrees C, 10 min), it caused an 18% reduction in the membrane elastic shear modulus. It also potentiated the spiculation of cells by lysophosphatidylcholine. These findings suggest that the contour of the resting cell is not normally dependent on the elasticity of or tension in the membrane skeleton. Rather, the elasticity of the skeleton stabilizes membranes against deformation. Urea treatment also caused the projections induced both by micropipette aspiration and by lysophosphatidylcholine to become irreversible. Furthermore, urea converted the axisymmetric conical spicules induced by lysophosphatidylcholine into irregular, curved and knobby spicules; i.e., echinocytosis became acanthocytosis. Unlike controls, the ghosts and membrane skeletons obtained from urea-generated acanthocytes were imprinted with spicules. These data suggest that perturbing interprotein associations with urea in situ allowed the skeleton to evolve plastically to accommodate the contours imposed upon it by the overlying membrane.  相似文献   

8.
We have examined fragments of the filamentous network underlying the human erythrocyte membrane by high-resolution electron microscopy. Networks were released from ghosts by extraction with Triton X-100, freed of extraneous proteins in 1.5 M NaCl, and collected by centrifugation onto a sucrose cushion. These preparations contained primarily protein bands 1 + 2 (spectrin), band 4.1 and band 5 (actin). The networks were partially disassembled by incubation at 37 degrees C in 2 mM NaPi (pH 7), which caused the preferential dissociation of spectrin tetramers to dimers. The fragments so generated were fractionated by gel filtration chromatography and visualized by negative staining with uranyl acetate on fenestrated carbon films. Unit complexes, which sedimented at approximately 40S, contained linear filaments approximately 7-8 nm diam from which several slender and convoluted filaments projected. The linear filaments had a mean length of 52 +/- 17 nm and a serrated profile reminiscent of F-actin. They could be decorated in an arrowhead pattern with S1 fragments of muscle heavy meromyosin which, incidentally, displaced the convoluted filaments. Furthermore, the linear filaments nucleated the polymerization of rabbit muscle G-actin, predominantly but not exclusively from the fast-growing ends. On this basis, we have identified the linear filaments as F-actin; we infer that the convoluted filaments are spectrin. Spectrin molecules were usually attached to actin filaments in clusters that showed a preference for the ends of the F-actin. We also observed free globules up to 15 nm diam, usually associated with three spectrin molecules, which also nucleated actin polymerization; these may be simple junctional complexes of spectrin, actin, and band 4.1. In larger ensembles, spectrin tetramers linked actin filaments and/or globules into irregular arrays. Intact networks were an elaboration of the basic pattern manifested by the fragments. Thus, we have provided ultrastructural evidence that the submembrane skeleton is organized, as widely inferred from less direct information, into short actin filaments linked by multiple tetramers of spectrin clustered at sites of association with band 4.1.  相似文献   

9.
The effects of red blood cell (RBC) age on membrane thermal properties have been investigated by using a 16-nitroxide stearic acid spin probe. We detected in unfractionated and most dense cells (2% fraction of circulating cells) a thermal transition at 40 degrees C that in young cells (1% fraction) was lowered at 33-35 degrees C. Spectrin seems to be directly involved in the transition detected in both young and unfractionated cells, as showed by the disappearance of the breaks after low salt extraction of spectrin. A further indication for a role of spectrin in this transition comes from its characteristic thermal unfolding above 40 degrees C. However, young cells did not show changes either in the thermal unfolding of spectrin or in the distribution of spectrin dimer, tetramer, and high oligomeric forms. These data rule out that spectrin of young RBC is modified in its thermal properties and indicate that young cells may have a different spectrin-membrane interaction. Treatment of unfractionated ghosts with an antibody specific for a fragment of the 10K domain of protein 4.1, which is fully competent for the spectrin-actin binding, produced an evident lowering of the transition temperature. The same antibody did not affect the thermal transition of young ghosts. Our results suggest that spectrin-membrane interactions may be regulated during RBC lifespan.  相似文献   

10.
A Tsuji  S Ohnishi 《Biochemistry》1986,25(20):6133-6139
The effects of incubation of erythrocyte ghosts under various conditions (ionic strength or addition of ankyrin, diamines, or ATP) on the lateral motion of band 3 in the membranes were studied by using the fluorescence photobleaching recovery technique. Incubation of ghosts with exogenous ankyrin increased the immobile fraction of band 3, from 0.6 in intact ghosts to 0.8-0.9 when an average of 0.2 mol of extra ankyrin was bound per mole of band 3. Ankyrin-free band 3 proteins were mobile, but their mobility was governed by the spectrin association state in the cytoskeletal network. The diffusion constant was 5.3 X 10(-11) cm2 s-1 at a spectrin tetramer mole fraction of 0.3-0.4 in 10 mM NaCl/5 mM sodium phosphate, pH 7.8, and decreased 1 order of magnitude when the tetramer fraction increased to 0.5 in higher NaCl concentration (150 mM NaCl). A similar decrease was observed when the spectrin tetramer fraction was increased by 0.2 mM spermine in 10 mM NaCl/10 mM tris(hydroxymethyl)aminomethane hydrochloride, pH 7.6. On the other hand, the rotational motion of band 3 in the membranes was not affected by the spectrin association state. Trypsin treatment of ghosts cleaved off the cytoplasmic domain of band 3 and caused a marked (8-fold) increase in the lateral mobility, D = 4.0 X 10(-10) cm2 s-1. These results indicate that the lateral mobility of ankyrin-free band 3 protein is restricted by interactions of their cytoplasmic domain with the cytoskeletal network. A model is presented that band 3 can pass the network when spectrins are in dissociated dimers and cannot pass when they are tetramers. The lateral diffusion constant is thus determined by the spectrin dimer population in the network.  相似文献   

11.
Human erthrocyte membranes in isotonic medium change shape from crenated spheres to biconcave disks and cup-forms when incubated at 37 degrees C in the presence of MgATP (M. P. Sheetz and S. J. Singer, 1977, J. Cell Biol. 73:638-646). The postulated relationship between spectrin phosphorylation and shape change (W. Birchmeier and S. J. Singer, 1977, J. Cell Biol. 73:647-659) is examined in this report. Salt extraction of white ghosts reduced spectrin phosphorylation during shape changes by 85-95%. Salt extraction did not alter crenation, rate of MgATP-dependent shape change, or the fraction (greater than 80%) ultimately converted to disks and cup-forms after 1 h. Spectrin was partially dephosphorylated in intact cells by subjection to metabolic depletion in vitro. Membranes from depleted cells exhibited normal shape-change behavior. Shape-change behavior was influenced by the hemolysis buffer and temperature and by the time required for membrane preparation. Tris and phosphate ghosts lost the capacity to change shape after standing for 1-2 h at 0 degrees C. Hemolysis in HEPES or N- tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid yielded ghosts that were converted rapidly to disks in the absence of ATP and did not undergo further conversion to cup-forms. These effects could not be attributed to differential dephsphorylation of spectrin, because dephosphorylation during ghost preparation and incubation was negligible. These results suggest that spectrin phosphorylation is not required for MgATP-dependent shape change. It is proposed that other biochemical events induce membrane curvature changes and that the role of spectrin is passive.  相似文献   

12.
Low ionic strength extraction (37 degrees C, 30 min) of ghosts from PK-deficient erythrocytes provided crude spectrin extract. No significant differences in the extract composition compared to normal donors were observed. The reticulocyte-dependent spectrin extractability was found among the subjects with PK-deficiency anemia. Likewise ATP-depletion affects spectrin extractability and also leads to the adsorption of cytoplasmic protein MW 50,000 to the reticulocyte membrane. The measurement of membrane fluidity using the fluorescence probe DPH did not reveal significant alterations in the moiety of integral membrane constituents.  相似文献   

13.
The cytoskeleton plays an important role in the stability and function of the membrane. Spectrin release from erythrocyte ghosts makes the membrane more fragile. However, the detail of membrane fragility has remained unclear. In the present study, the effects of incubation temperatures and polyamines on the membrane structure of ghosts under hypotonic conditions have been examined. Upon exposure of ghosts to a hypotonic buffer at 0-37 degrees C, reduction of ghost volume, spectrin release and decrease of band 3-cytoskeleton interactions were clearly observed above 30 degrees C. However, such changes were completely inhibited by spermine and spermidine. Interestingly, conformational changes of spectrin induced at 37 degrees C or 49 degrees C were not suppressed by both polyamines. Flow cytometry of fluorescein isothiocyanate-labelled ghosts exposed to 37 degrees C demonstrated the two peaks corresponding to ghosts with normal spectrin content and decreased one. Taken together, these results indicate that the degree of spectrin release from the membrane under hypotonic conditions is not same in all ghosts, and that polyamines inhibit the spectrin release followed by changes in the membrane structure, but not conformational changes of spectrin.  相似文献   

14.
Band 3 tyrosine kinase. Association with the human erythrocyte membrane   总被引:1,自引:0,他引:1  
Band 3, the anion transport protein of the human erythrocyte membrane, is known to be phosphorylated in ghosts at tyrosine 8. The band 3 tyrosine kinase is now shown to be associated with the Triton X-100 insoluble membrane skeleton but not with spectrin or actin. The kinase was reversibly dissociated from membranes and skeletons at elevated ionic strength (50% at mu = 0.15). The binding capacity of the membranes exceeded their native complement of the kinase by at least 60-fold. Prior removal of all peripheral proteins from the cytoplasmic surface of inside-out vesicles did not diminish the rebinding of the kinase, whereas prior removal of band 3 and other accessory proteins from skeletons abolished the rebinding of the kinase. An excess of glyceraldehyde-3-P dehydrogenase, which binds to band 3 in the region of the phosphate acceptor tyrosine 8, both inhibited the phosphorylation of band 3 and released the kinase into solution. Soluble 40/45-kDa chymotryptic fragments from the cytoplasmic pole of band 3 were phosphorylated at least as well as membranous band 3 and caused the release of the kinase from Triton-extracted skeletons. Membrane skeletons lacked most of the membrane band 3, but retained most of the kinase. Nevertheless, the band 3 population solubilized by Triton X-100 from prelabeled ghosts was as well phosphorylated as the population of band 3 retained by the skeletons. Furthermore, the fraction of band 3 not associated with the skeletons following Triton X-100 extraction was a good substrate for the solubilized kinase. We conclude that this tyrosine kinase is reversibly bound to the membrane through electrostatic interactions with the polyacidic sequence surrounding the phosphate accepting tyrosine 8 on band 3. The kinase appears to be preferentially linked to those band 3 molecules associated with the membrane skeleton, but it impartially phosphorylates band 3 species free in the bilayer as well as band 3 fragments in solution. The resemblance of its plasma membrane binding behavior to that of tyrosine kinases of certain viruses causing oncogenic transformation is discussed.  相似文献   

15.
T Forte  T L Leto  M Minetti  V T Marchesi 《Biochemistry》1985,24(27):7876-7880
Proteins involved in a structural transition in red blood cell membranes detected at 8 +/- 1.5 degrees C by a stearic acid spin-label have been investigated. Calcium loading of red blood cells with ionophore A23187 caused the disappearance of the 8 degrees C transition. Protein 4.1 appears to be the most susceptible protein to Ca2+ treatment. Antibodies specific for spectrin, band 3 (43K cytoplasmic domain), and protein 4.1 have been utilized as specific probes to modify membrane thermotropic properties. The 8 degrees C transition was eliminated by anti-4.1 protein antibodies but was not modified by the other antibodies. To further characterize the protein(s) involved in the transition, ghosts were subjected to sequential extraction of skeletal proteins. The extraction of band 6, spectrin, and actin did not modify the 8 degrees C transition. In contrast, high-salt extraction (1 M KCl) of spectrin-actin-depleted vesicles, a procedure that extracts proteins 2.1 and 4.1, was able to eliminate the 8 degrees C transition. Rebinding of purified protein 4.1 to the high salt extracted vesicles restored the 8 degrees C transition. These results indicate the involvement of protein 4.1 in the transition and suggest a functional membrane association of this protein. The binding of protein 4.1 to the membrane seems to contribute significantly to the thermotropic properties of red blood cells.  相似文献   

16.
The membrane skeleton, a protein lattice at the internal side of the red cell membrane, is principally composed of spectrin, actin and proteins 4.1 and 4.9. We have examined negatively stained red cell ghosts and demonstrated, on an ultrastructural level, a separation of the lipid bilayer from the membrane skeleton during echinocytic transformation. The electron micrographs of discoidal red cell ghosts suspended in hypotonic buffer revealed a filamentous reticulum that uniformly laminated the entire submembrane region. transformation of the discoidal ghosts into echinocytic form, as induced by incubation in isotonic buffer, resulted in a disruption of skeletal continuity underlying the surface contour of the membrane spicule. The submembrane reticulum extended into the base and the neck of the spiny processes of the crenated ghosts but was absent at the tip of these projections. In addition, membrane vesicles without a submembrane reticulum were detected either attached to the tips of the spicules or released into the supernatant from the echinocytic ghosts. Protein analysis revealed that the released vesicles were enriched in bands 3, 4.1 and 7 and contained very little of the membrane skeletal proteins, spectrin and actin. The data indicate that during echinocyte formation, parts of the lipid bilayer physically separate from the membrane skeleton, leading to a formation of skeleton-poor lipid vesicles.  相似文献   

17.
At neutral pH spectrin induces modest leakage of trapped calcein from reverse-phase or extruded, but not sonicated, vesicles composed of phosphatidylserine, but not phosphatidylcholine. The extent of leakage from extruded vesicles is not or is only slightly affected by magnesium ions at a physiological concentration or calcium ions at a greater than physiological concentration, respectively. In addition to accounting for several previously discrepant observations on the lytic effects of spectrin, these findings indicate that some proteins like spectrin may destabilize vesicles with low curvature more readily than vesicles of high curvature, in contrast to certain amphiphilic peptides. 60% less leakage is induced from phosphatidylserine vesicles by heat-denatured than by native spectrin. In contrast, both trypsin- and subtilisin-treated spectrins, if sufficiently digested, induce several-fold more leakage than undigested spectrin. Since spectrin prepared either by 1 M Tris dissociation of Triton-extracted cytoskeletons or by low ionic strength extraction of ghosts released the same amounts of calcein from vesicles of various compositions, these effects are unlikely to reflect artifacts of spectrin preparation. Furthermore, spectrin is unlikely to promote leakage in vivo, since vesicles composed of phosphatidylserine, cholesterol and/or phosphatidylethanolamine, which constitute the lipid composition of the inner monolayer of the red cell membrane, did not leak on addition of spectrin, whereas vesicles composed of phosphatidylserine and phosphatidylcholine, did leak in the presence of spectrin.  相似文献   

18.
Erythrocyte spectrin, isolated by aqueous extraction of erythrocyte ghosts, may be freed from contaminating membrane lipids and small amounts of other proteins by gel chromatography in 5 or 10 mM deoxycholate. The purified protein, in deoxycholate, is a mixture of monomers and dimers, both highly asymmetric molecules. The hydrodynamic properties of the dimer closely resemble those of muscle myosin, and spectrin and myosin also have similar circular dichroism spectra. The proportion of dimer to monomer in the purified protein varies from one preparation to another, an observation for which there is no simple explanation. In the absence of deoxycholate, spectrin associated beyond the dimer stage, possibly by loose end-to-end aggregation involving hydrophobic forces.  相似文献   

19.
When rat red cell ghosts were incubated with 0.1-0.5 mM CdCl2 in 10 mM Tris-HCl (pH 7.4) at 37 degrees C for 30 min, they became irregular in shape and released small vesicles. The release of vesicles was dependent on the incubation temperature and Cd2+ concentration. The maximum release occurred at 37 degrees C in the presence of 0.2 mM Cd2+. The protein composition of Cd2+-induced vesicles was similar to that of the vesicles released from ATP-depleted red cells. Upon incubation with 0.1-0.2 mM Cd2+, more than 90% of the Cd2+ added to the incubation buffer was recovered in ghosts and 15-20% of the ghost Cd2+ was located on the cytoskeletons prepared by washing ghosts with 0.5% Triton X-100 solution containing 0.1 M KCl and 10 mM Tris-HCl (pH 7.4). Moreover, the cytoskeletons prepared from Cd2+-treated ghosts markedly contained cell membrane proteins, bands 2.1, 3, 4.2 and 4.5, and glycophorins. The association of bands 3 and 4.2 with cytoskeletons increased with increasing concentrations of Cd2+ added to the incubation buffer and saturated at 0.2 mM Cd2+. The solubilization of cytoskeletal proteins, bands 1, 2 and 5, from ghosts at low ionic strength was almost completely suppressed by preincubation of ghosts with 0.1 mM Cd2+. HgCl2, PbCl2 and ZnCl2 at 0.2 mM each also produced an increased association of cell membrane proteins with cytoskeletons, whereas CaCl2 and MgCl2 did not.  相似文献   

20.
C Peach  J Velten 《BioTechniques》1992,12(2):181-4, 186
Chloramphenicol acetyltransferase (CAT) activity was quantified in crude extracts from tobacco callus tissues using a modification of a previously reported diffusion assay. We describe here the alterations necessary in applying this rapid and simple assay procedure to plant materials. Due to the high concentration of nonspecific oxidases present in most plant tissues, some type of protective agent is required to maintain enzyme activity. We have tested beta-mercaptoethanol, cysteine, dithiothreitol, ascorbic acid and polyvinyl pyrrolidone as protective agents within the initial extraction buffer. We also investigated the effect of heat (60 degrees C, 10 min) and 5 mM EDTA on CAT activity. The highest CAT activity was obtained using 5 mM cysteine plus 5 mM EDTA in 40 mM Tris-HCl (pH 7.8) as the initial extraction buffer followed by a heat treatment. Using this buffer, CAT activity was stable on ice for more than two hours. In our hands, total acetyl-coenzyme A concentration within the assay mixture was found to be saturating at 250 microM and the Km determined to be 100 microM. Assays performed using the same crude plant extract indicate that 1) duplicate assays show less than 1.5% variation in activities and 2) CAT activity increases linearly with respect to volume of extract used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号