首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Endonuclease IV (nfo) mutant of Escherichia coli.   总被引:59,自引:26,他引:33       下载免费PDF全文
A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested.  相似文献   

2.
A recombinant plasmid containing a Serratia marcescens DNA repair gene has been analyzed biochemically and genetically in Escherichia coli mutants deficient for repair of alkylated DNA. The cloned gene suppressed sensitivity to methyl methanesulfonate of an E. coli strain deficient in 3-methyladenine DNA glycosylases I and II (i.e., E. coli tag alkA) and two different E. coli recA mutants. Attempts to suppress the methyl methanesulfonate sensitivity of the E. coli recA mutant by using the cloned E. coli tag and alkA genes were not successful. Southern blot analysis did not reveal any homology between the S. marcescens gene and various known E. coli DNA repair genes. Biochemical analysis with the S. marcescens gene showed that the encoded DNA repair protein liberated 3-methyladenine from alkylated DNA, indicating that the DNA repair molecular is an S. marcescens 3-methyladenine DNA glycosylase. The ability to suppress both types of E. coli DNA repair mutations, however, suggests that the S. marcescens gene is a unique bacterial DNA repair gene.  相似文献   

3.
After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), and X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E. coli K-12 linkage map. The radB101 mutation sensitized wildtype cells to gamma and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their gamma-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively gamma-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for gamma- and uv-radiation mutagenesis, it showed only a slight enhancement of gamma- and uv-radiation-induced DNA degradation, and it was approximately 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after gamma irradiation and in postreplication repair after uv irradiation for the following reasons; the radB strain was normal for the host-cell reactivation of gamma- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to gamma and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.  相似文献   

4.
T4+ exhibits increased ultraviolet sensitivity on derivatives of Escherichia coli K12 or B lacking deoxyribonucleic acid (DNA) polymerase I. However, the sensitivity of T4v is not affected by the absence of host DNA polymerase. T4x and T4y also show increased sensitivity on DNA polymerase-deficient strains, but to a lesser extent than observed with wild-type T4. When T4x or T4y, but not T4+, are plated on a double mutant lacking both DNA polymerase and the uvrA gene product, a partial suppression of the polymerase effect is observed. Host ligase appears to be able to suppress to some extent the T4y phenotype but has no effect on wild-type T4 or other T4 mutants. T4xv incubated in E. coli B or B(s-1) in the presence of chloramphenicol (50 mug/ml) shows increased resistance over directly plated irradiated phage. Increased survival under the same conditions was not observed with T4+ or other T4 mutants. The repair of X-ray-damaged T4 was investigated by examining survival curves of T4+, T4x, T4y, T4ts43, and T4ts30. The repair processes were further defined by observing the effects of plating irradiated phage on various hosts including strains lacking DNA polymerase I or polynucleotide ligase. Two classes of effects were observed. Firstly, the x and y gene products seem to be involved in a repair system utilizing host ligase. Secondly, in the absence of host DNA polymerase, phage sensitivity is increased in an unknown manner which is enhanced by the presence of host uvrA gene product.  相似文献   

5.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

6.
M. E. Santos  J. W. Drake 《Genetics》1994,138(3):553-564
Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity.  相似文献   

7.
The purification and properties of an ultraviolet (UV) repair endonuclease are described. The enzyme is induced by infection of cells of Escherichia coli with phage T4 and is missing from extracts of cells infected with the UV-sensitive and excision-defective mutant T4V(1). The enzyme attacks UV-irradiated deoxyribonucleic acid (DNA) containing either hydroxymethylcytosine or cytosine, but does not affect native DNA. The specific substrate in UV-irradiated DNA appears to be pyrimidine dimer sites. The purified enzyme alone does not excise pyrimidine dimers from UV-irradiated DNA. However, dimer excision does occur in the presence of the purified endonuclease plus crude extract of cells infected with the mutant T4V(1).  相似文献   

8.
It is reported here that the rpr DNA repair gene of Serratia marcescens does not complement an Escherichia coli xth nfo AP endonuclease mutation for resistance to methyl methanesulphonate (MMS). Rather, rpr sensitized Escherichia coli wild-type, xth, and nfo strains to MMS. Also, it was found that rpr could not complement a triple tag alkA recA mutation in E. coli, indicating that there are limits to rpr complementing capabilities. It was determined that rpr gene dosage was not a factor in recA complementation. MMS sensitization of an E. coli wild-type strain, however, was directly related to rpr copy number. These data indicate that Rpr does not have an associated AP endonuclease activity, and that it is incapable of substituting for Tag I, Tag II, and RecA in a tag alkA recA background.  相似文献   

9.
The human endonuclease V gene is located in chromosome 17q25.3 and encodes a 282 amino acid protein that shares about 30% sequence identity with bacterial endonuclease V. This study reports biochemical properties of human endonuclease V with respect to repair of deaminated base lesions. Using soluble proteins fused to thioredoxin at the N-terminus, we determined repair activities of human endonuclease V on deoxyinosine (I)-, deoxyxanthosine (X)-, deoxyoxanosine (O)- and deoxyuridine (U)-containing DNA. Human endonuclease V is most active with deoxyinosine-containing DNA but with minor activity on deoxyxanthosine-containing DNA. Endonuclease activities on deoxyuridine and deoxyoxanosine were not detected. The endonuclease activity on deoxyinosine-containing DNA follows the order of single-stranded I>G/I>T/I>A/I>C/I. The preference of the catalytic activity correlates with the binding affinity of these deoxyinosine-containing DNAs. Mg(2+) and to a much less extent, Mn(2+), Ni(2+), Co(2+) can support the endonuclease activity. Introduction of human endonuclease V into Escherichia coli cells deficient in nfi, mug and ung genes caused three-fold reduction in mutation frequency. This is the first report of deaminated base repair activity for human endonuclease V. The relationship between the endonuclease activity and deaminated deoxyadenosine (deoxyinosine) repair is discussed.  相似文献   

10.
The responses of Escherichia coli to X rays and hydrogen peroxide were examined in mutants which are deficient in one or more DNA repair genes. Mutant cells deficient in either exonuclease III (xthA) or endonuclease IV (nfo) had normal resistance to X rays, but an xthA-nfo double mutant showed a sensitivity increased over that of either parental strain. A DNA polymerase I mutant (polA) was more sensitive than the xthA-nfo mutant. Cells bearing mutations in all of the polA, xthA, and nfo genes were more sensitive to X rays than polA and xthA-nfo mutants. Similar repair responses were obtained by exposing these mutant cells to hydrogen peroxide, with the exception of the xthA mutant, which was hypersensitive to this agent. The DNA polymerase III mutant (polC(Ts)) was slightly more sensitive to the agents than the wild-type strain at the restrictive temperature. The sensitivity of the polC-xthA-nfo mutant to X rays and hydrogen peroxide was greater than that of polC but almost the same as that of the xthA-nfo mutant. From these results it appears that there are at least four repair pathways, the DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase III-, and exonuclease III/endonuclease IV-dependent pathways, for the repair of oxidative DNA damages in E. coli.  相似文献   

11.
The Streptococcus pneumoniae polA+ gene was introduced into Escherichia coli on the recombinant plasmid pSM31, which is based on the pSC101 replicon. Extracts of E. coli polA5 mutants containing pSM31 showed DNA polymerase activity, indicating that the pneumococcal DNA polymerase I was expressed in the heterospecific host. Complete complementation of the E. coli polA5 mutation by the pneumococcal polA+ gene was detected in excision repair of DNA damage.  相似文献   

12.
A mutant allele of the Escherichia coli nfo gene encoding endonuclease IV, nfo-186, was cloned into plasmid pUC18. When introduced into an E. coli xthA nfo mutant, the gene product of nfo-186 complemented the hypersensitivity of the mutant to methyl methanesulfonate (MMS) but not to hydrogen peroxide (H2O2) and bleomycin. These results suggest that the mutant endonuclease IV has normal activity for repairing DNA damages induced by MMS but not those induced by H2O2 and bleomycin. A missense mutation in the cloned nfo-186 gene, in which the wild-type glycine 149 was replaced by aspartic acid, was detected by DNA sequencing. The wild-type and mutant endonuclease IV were purified to near homogeneity, and their apurinic (AP) endonuclease and 3'-phosphatase activities were determined. No difference was observed in the AP endonuclease activities of the wild-type and mutant proteins. However, 3'-phosphatase activity was dramatically reduced in the mutant protein. From these results, it is concluded that the endonuclease IV186 protein is specifically deficient in the ability to remove 3'-terminus-blocking damage, which is required for DNA repair synthesis, and it is possible that the lethal DNA damage by H2O2 is 3'-blocking damage and not AP-site damage.  相似文献   

13.
The gene 32 mutation amA453 sensitizes bacteriophage T4 to the lethal effects of ultraviolet (UV) irradiation, methyl methanesulfonate and angelicin-mediated photodynamic irradiation when treated particles are plated on amber-suppressing host cells. The increased UV sensitivity caused by amA453 is additive to that caused by mutations in both the T4 excision repair (denV) and recombination repair (uvsWXY) systems, suggesting the operation of a third kind of repair system. The mutation uvs79, with many similarities to amA453 but mapping in gene 41, is largely epistatic to amA453. The mutation mms1, also with many similarities to amA453, maps close to amA453 within gene 32 and is largely epistatic to uvs79. Neither amA453 nor uvs79 affect the ratio of UV-induced mutational to lethal hits, nor does amA453 affect spontaneous or UV-enhanced recombination frequencies. Gene 32 encodes the major T4 ssDNA-binding protein (the scaffolding of DNA replication) and gene 41 encodes a DNA helicase, both being required for T4 DNA replication. We conclude that a third repair process operates in phage T4 and suggest that it acts during rather than before or after DNA replication.  相似文献   

14.
Three different mutations were introduced in the polA gene of Streptococcus pneumoniae by chromosomal transformation. One mutant gene encodes a truncated protein that possesses 5' to 3' exonuclease but has lost polymerase activity. This mutation does not affect cell viability. Other mutated forms of polA that encode proteins with only polymerase activity or with no enzymatic activity could not substitute for the wild-type polA gene in the chromosome unless the 5' to 3' exonuclease domain was encoded elsewhere in the chromosome. Thus, it appears that the 5' to 3' exonuclease activity of the DNA polymerase I is essential for cell viability in S. pneumoniae. Absence of the polymerase domain of DNA polymerase I slightly diminished the ability of S. pneumoniae to repair DNA lesions after ultraviolet irradiation. However, the polymerase domain of the pneumococcal DNA polymerase I gave almost complete complementation of the polA5 mutation in Escherichia coli with respect to resistance to ultraviolet irradiation.  相似文献   

15.
The survival and repair of single-strand breaks of DNA in gamma-ray-irradiated E. coli adapted to MMS (20 mkg/ml during 3 hours) have been investigated. It is shown that the survival of adapted bacteria of radioresistant strains B/r, H/r30, AB1157 and W3110 pol+ increases with DMF (dose modification factor) ranging within 1.4-1.8 and in radiosensitive strains Bs-1, AB1157 recA13 and AB1157 lexA3 with DMF ranging within 1.3-1.4, and does not change in strains with mutation in polA gene P3478 polA1 and 016 res-3. There is no increase in radioresistance during the adaptation to MMS under the action of the protein synthesis inhibitor chloramphenicol. The increase in radioresistance during the adaptation to MMS correlates with the acceleration of repair of gamma-ray-induced single-strand breaks in the radioresistant strains B/r and W3110 pol+ and with the appearance of the ability to repair some part of DNA single-strand breaks in the mutant Bs-1, which beyond the adaptation to MMS does not repair these damages. The incomplete reparability of DNA single-strand breaks in P3478 polA1 strain cells, both adapted and non-adapted to MMS, is equal.  相似文献   

16.
Apurinic/apyrimidinic (AP) endonucleases play a major role in the repair of AP sites, oxidative damage and alkylation damage in DNA. We employed Saccharomyces cerevisiae in an unbiased forward genetic screen to identify amino acid substitutions in the major yeast AP endonuclease, Apn1, that impair cellular DNA repair capacity by conferring sensitivity to the DNA alkylating agent methyl methanesulfonate. We report here the identification and characterization of the Apn1 V156E amino acid substitution mutant through biochemical and functional analysis. We found that steady state levels of Apn1 V156E were substantially decreased compared to wild type protein, and that this decrease was due to more rapid degradation of mutant protein compared to wild type. Based on homology to E. coli endonuclease IV and computational modeling, we predicted that V156E impairs catalytic ability. However, overexpression of mutant protein restored DNA repair activity in vitro and in vivo. Thus, the V156E substitution decreases DNA repair capacity by an unanticipated mechanism via increased degradation of mutant protein, leading to substantially reduced cellular levels. Our study provides evidence that the V156 residue plays a critical role in Apn1 structural integrity, but is not involved in catalytic activity. These results have important implications for elucidating structure-function relationships for the endonuclease IV family of proteins, and for employing simple eukaryotic model systems to understand how structural defects in the major human AP endonuclease APE1 may contribute to disease etiology.  相似文献   

17.
The size of the repair patch produced by E. coli DNA polymerase (Pol I) following the removal of a pyrimidine dimer from DNA in response to the nicking activity of T4 endonuclease (T4 endo V) was determined. A 48-bp DNA containing a pyrimidine dimer at a defined location was labelled in the damaged strand and incubated with T4 endo V and E. coli endonuclease IV. Subsequently, DNA synthesis by DNA Pol I was carried out in the presence of four dNTPs, ATP and DNA ligase. Analysis of the reaction products on a sequencing gel revealed a ladder of only 4-oligonucleotides, 1-4 nucleotides greater in length than the fragment generated by the combined nicking activities of T4 endo V and E. coli endonuclease IV. Thus we conclude that the in vitro repair patch size of T4 endo V is 4 nucleotides and that in some cases the repaired DNA is not ligated.  相似文献   

18.
Deoxyribonucleic acid (DNA) from bacteriophage T7 has been used to monitor the capacity of gently lysed extracts of Escherichia coli to perform repair resynthesis after ultraviolet (UV) irradiation. Purified DNA damaged by up to 100 J of UV radiation per m2 was treated with an endonuclease from Micrococcus luteus that introduces single-strand breaks in irradiated DNA. This DNA was then used as a substrate to study repair resynthesis by extracts of E. coli. It was found that incubation with the extract and exogenous nucleoside triphosphates under suitable assay conditions resulted in removal of all pyrimidine dimers and restoration of the substrate DNA to its original molecular weight. Repair resynthesis, detected as nonconservative, UV-stimulated DNA synthesis, was directly proportional tothe number of pyrimidine dimers introduced by radiation. The repair mode described here appears to require DNA polymerase I since it does no occur at the restrictive temperature in polA12 mutants, which contain a thermolabile polymerase. The addition of purified DNA polymerase I to extracts made from a polA mutant restores the ability to complete repair at the restrictive temperature.  相似文献   

19.
The ability of mutagenic agents, nonmutagenic substances and defects in DNA repair to alter the genotype of F' partial diploid (F30) Escherichia coli was determined. The frequency of auxotrophic mutants and histidine requiring (His-) haploid colonies was increased by mutagen treatment but Hfr colonies were not detected in F30 E. coli even with specific selection techniques. Genotype changes due to nonreciprocal recombination were determined by measuring the frequency of His- homogenotes, eg. F' hisC780, hisI+/hisC780, hisI+, arising from a His+ heterogenote, F' hisC780 hisI+/hisC+, his1903. At least 75% of the recombinants were homozygous for histidine alleles which were present on the F' plasmid (exogenote) of the parental hetergenote rather than for histidine alleles on the chromosome. Mutagens, chemotherapeutic agents which histidine alleles on the chromosome. Mutagens, chemotherapeutic agents which block DNA synthesis and a defective DNA polymerase I gene, polA1, were found to increase the frequency of nonreciprocal recombination. A defect in the ability to excise thymine dimers, uvrC34, did not increase spontaneous nonreciprocal recombination. However, UV irradiation but not methyl methanesulfonate (MMS) induced greater recombination in this excision-repair defective mutant than in DNA-repair-proficient strains. Mutagenic agents, with the exception of ethyl methanesulfonate (EMS), induced greater increases in recombination than the chemotherapeutic agents or the polA1 mutation. EMS, which causes relatively little degradation of DNA, was more mutagenic but less recombinogenic than MMS, a homologous compound ths that inhibition of DNA occurring single-stranded regions in replicative intermediates of the DNA. Mutagens which cause the rapid breakdown of DNA may, in addition, introduce lesions into the genome that increase the number of single-stranded regions thus inducing even higher frequencies of recombination.  相似文献   

20.
T4 endonuclease V, which is involved in repair of ultraviolet-damaged DNA, has been purified 3600 fold from T4D-infected Escherichia coli. The enzyme shows optimal activity at pH 7.2 and does not require added divalent ions. Endonuclease V attacks both native and heat-denatured DNA provided that the DNA has been irradiated, and the enzyme activity is dependent on the dose of ultraviolet irradiation. The rate and the extent of the reaction are greater with irradiated native DNA although the Km values for the two types of DNA are the same (2.25 - 10(-5) M). The enzyme is readily inactivated by heat and is sensitive to p-chloromercuribenzoate. Endonuclease V-treated irradiated DNA is degraded by spleen phosphodiesterase only when the DNA has been treated with alkaline phosphatase, suggesting that the enzyme produces 5'-phosphoryl termini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号