首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular mechanisms in the pathogenesis of traumatic brain injury   总被引:15,自引:0,他引:15  
Traumatic brain injury (TBI) is a serious neurodisorder commonly caused by car accidents, sports related events or violence. Preventive measures are highly recommended to reduce the risk and number of TBI cases. The primary injury to the brain initiates a secondary injury process that spreads via multiple molecular mechanisms in the pathogenesis of TBI. The events leading to both neurodegeneration and functional recovery after TBI are generalized into four categories: (i) primary injury that disrupts brain tissues; (ii) secondary injury that causes pathophysiology in the brain; (iii) inflammatory response that adds to neurodegeneration; and (iv) repair-regeneration that may contribute to neuronal repair and regeneration to some extent following TBI. Destructive multiple mediators of the secondary injury process ultimately dominate over a few intrinsic protective measures, leading to activation of cysteine proteases such as calpain and caspase-3 that cleave key cellular substrates and cause cell death. Experimental studies in rodent models of TBI suggest that treatment with calpain inhibitors (e.g., AK295, SJA6017) and neurotrophic factors (e.g., NGF, BDNF) can prevent neuronal death and dysfunction in TBI. Currently, there is still no precise therapeutic strategy for the prevention of pathogenesis and neurodegeneration following TBI in humans. The search continues to explore new therapeutic targets and development of promising drugs for the treatment of TBI.  相似文献   

2.
3.
4.
5.
6.
Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. TBI severity classification, based on the hospital admission Glasgow Coma Scale (GCS) score, ranges from mild (GCS 13–15) and moderate (GCS 9–12) to severe (GCS ≤ 8). The GCS reflects the risk of dying from TBI, which is low after mild (∼1%), intermediate after moderate (up to 15%) and high (up to 40%) after severe TBI. Intracranial damage can be focal, such as epidural and subdural haematomas and parenchymal contusions, or diffuse, for example traumatic axonal injury and diffuse cerebral oedema, although this distinction is somewhat arbitrary. Study of the cellular and molecular post-traumatic processes is essential for the understanding of TBI pathophysiology but even more to find therapeutic targets for the development of neuroprotective drugs to be eventually used in human beings. To date, studies in vitro and in vivo, mainly in animals but also in human beings, are unravelling the pathological TBI mechanisms at high pace. Nevertheless, TBI pathophysiology is all but completely elucidated. Neuroprotective treatment studies in human beings have been disappointing thus far and have not resulted in commonly accepted drugs. This review presents an overview on the clinical aspects and the pathophysiology of focal and diffuse TBI, and it highlights several acknowledged important events that occur on molecular and cellular level after TBI.  相似文献   

7.
8.
The amino acid L-glutamate mediates signals at excitatory synapses in the CNS where its effects are controlled by co-ordinated activities of various types of glutamate receptor and transporter. This signalling mechanism has proved to be far more ubiquitous with many different cell types responding to glutamate. The glutamate transporter GLAST-1 was the first component of this pathway identified in bone where its expression was found to be mechanoresponsive in osteocytes. There is now a wealth of evidence supporting a role for this signalling mechanism in bone. Osteoblasts can release glutamate in a regulated manner and express functional glutamate receptors that influence their differentiation and osteogenic activity. Likewise, osteoclasts express functional glutamate receptors that influence their bone resorbing capacity. This article considers the various functions of glutamate transporters in this signalling pathway, and the evidence supporting an important role of glutamate signalling in regulating bone cell activities.  相似文献   

9.
The co-ordinate functioning of neurons and glia is required for glutamate-mediated neurotransmission. In this study, we show by immunocytochemical detection of D-aspartate uptake, that functional glutamate transporters are present in the developing CNS of fetal and neonatal rats, including forebrain, midbrain and hindbrain, at least as early as embryonic day 12 (E12). Use of the transport inhibitor dihydrokainic acid revealed a significant role for GLT-1 in the uptake process.Immunolabelling for the glutamate transporters GLAST, GLT-1alpha and GLT-1v showed that each of these proteins are expressed early in development and appear to be restricted to glial-like cells throughout the development period examined (except in the retina, where neuronal elements were also labelled). Our capacity to detect very early expression of the variant forms of GLT-1 contrasts with other studies, a feature that we attribute to the use of antigen-recovery techniques that unmask protein epitopes that are otherwise undetectable. These studies illustrate the widespread presence of functional glutamate transporters in the developing CNS, in many cases before the onset of periods of synaptogenesis and indicate that regulation of extracellular glutamate by multiple excitatory amino acid transporters might be crucial in early CNS development.  相似文献   

10.
Glutamate, the main excitatory amino acid in the vertebrate brain, is critically involved in most of the physiological functions of the central nervous system. It has traditionally been assumed that glutamate triggers a wide array of signaling cascades through the activation of specific membrane receptors. The extracellular levels are tightly regulated to prevent neurotoxic insults. Electrogenic Na(+)-dependent glial glutamate transporters remove the bulk of the neurotransmitter from the synaptic cleft. An exquisitely ordered coupling between glutamatergic neurons and surrounding glia cells is fundamental for excitatory transmission. The glutamate/glutamine and astrocyte/neuron lactate shuttles provide the biochemical framework of this compulsory association. In this context, recent advances show that glial glutamate transporters act as signal transducers that regulate the expression of proteins involved in their compartmentalization with neurons in the so-called tripartite synapse.  相似文献   

11.
12.
目的:研究高压氧(HBO)对大鼠创伤性脑损伤(TBI)治疗效用并观察脑组织星形胶质细胞活化及胶质细胞源性神经营养因子(GDNF)和神经生长因子(NGF)表达的变化以探讨作用机制。方法:SD雄性大鼠54只,随机分为3组(n=18):假手术组、TBI组和HBO治疗组。采用Feeney法建立大鼠TBI模型,假手术组只开放骨窗,不予打击。HBO治疗组大鼠于脑损伤后6 h采用动物高压舱,以3ATA压力纯氧治疗60 min。TBI后48 h测量神经功能,然后分离脑组织,其中18只用干湿法测定脑含水量;18只脑组织用于切片,部分进行尼氏染色后作形态学观察,部分进行免疫组织化学染色,检测星形胶质细胞标记物胶质纤维酸性蛋白(GFAP)、波形蛋白(vimentin)与S100蛋白的表达;另18只大鼠取伤侧脑半球,进行Western blot分析,观察GDNF和NGF的表达。结果:HBO治疗能减轻神经功能障碍,降低脑含水量,减少海马部位神经细胞丢失,进一步激活损伤侧皮质与海马部位GFAP、vimentin与S-100阳性表达星形胶质细胞,促进损伤侧脑组织GDNF与NGF的表达。结论:HBO对创伤性脑损伤有较好治疗效果,其机制与上调GDNF和NGF的表达有关。  相似文献   

13.
In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules.  相似文献   

14.
15.
16.
17.
Traumatic brain injury (TBI) is defined as a traumatically induced structural injury or physiological disruption of brain function as a result of external forces, leading to adult disability and death. A growing body of evidence reveals that alterations in autophagy-related proteins exist extensively in both experimentally and clinically after TBI. Of note, the autophagy pathway plays an essential role in pathophysiological processes, such as oxidative stress, inflammatory response, and apoptosis, thus contributing to neurological properties of TBI. With this in mind, this review summarizes a comprehensive overview on the beneficial and detrimental effects of autophagy in pathophysiological conditions and how these activities are linked to the pathogenesis of TBI. Moreover, the relationship between oxidative stress, inflammation, apoptosis, and autophagy occur TBI. Ultimately, multiple compounds and various drugs targeting the autophagy pathway are well described in TBI. Therefore, autophagy flux represents a potential clinical therapeutic value for the treatment of TBI and its complications.  相似文献   

18.
兴奋性氨基酸转运体(excitatory amino acid transporters,EAATs)是摄取细胞外液谷氨酸、保持细胞外谷氨酸低浓度的主要机制,已发现了五种EAATs,其中胶质细胞谷氨酸转运体在终止谷氨酸能神经传递、维持细胞外液谷氨酸浓度处于低水平方面发挥更重要作用。胶质细胞谷氨酸转运体的表达和功能受谷氨酸及其受体、垂体腺苷酸环化酶激活多肽、生长因子、内皮素、一氧化氮等许多因素的影响,其表达减少及功能降低与脑缺血损害的发生和发展密切相关,脑缺血预适应可通过调控其表达或改善其功能而诱导脑缺血耐受。  相似文献   

19.
In this study we tested if calcium imbalance and mitochondrial dysfunction, which have been implicated in the conventional mechanisms of excitotoxicity induced by glutamate (Glu), are also involved in homocysteine (Hcy) neurotoxicity. Primary cultures of rat cerebellar granule cells were incubated for 30 min in the presence of 25 mM D,L-Hcy or 1mM Glu. At these concentrations both amino acids induced comparable neurodegeneration and chromatin condensation, evaluated after 24 h using the propidium iodide and Hoechst 33258 staining. These effects were partially prevented by cyclosporin A (CsA), but not FK506. Hcy-induced release of [(3)H]inositol phosphates and increase in intracellular calcium level (evaluated with fluo-3 fluorescent probe) were weakly expressed. Hcy- and Glu-induced mitochondrial swelling was visualized under electron microscope, and the release of Cytochrome c was evaluated using immunocytochemical method and confocal microscopy. Comparing to Glu, the effects of Hcy were slightly less expressed and less sensitive to CsA, while FK506 did not modify mitochondrial alterations. These data indicate that mitochondrial alterations play a similar role in acute Hcy and Glu neurotoxicity, although the mechanisms triggering Glu- and Hcy-evoked mitochondrial dysfunction seem to differ, Hcy toxicity being less dependent on calcium.  相似文献   

20.
The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton–Euler dynamics of brain’s micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain’s rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain’s dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model.
Vladimir G. IvancevicEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号