首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila Hedgehog protein and its vertebrate counterpart Sonic hedgehog are required for a wide variety of patterning events throughout development. Hedgehog proteins are secreted from cells and undergo autocatalytic cleavage and cholesterol modification to produce a mature signaling domain. This domain of Sonic hedgehog has recently been shown to acquire an N-terminal acyl group in cell culture. We have investigated the in vivo role that such acylation might play in appendage patterning in mouse and Drosophila; in both species Hedgehog proteins define a posterior domain of the limb or wing. A mutant form of Sonic hedgehog that cannot undergo acylation retains significant ability to repattern the mouse limb. However, the corresponding mutation in Drosophila Hedgehog renders it inactive in vivo, although it is normally processed. Furthermore, overexpression of the mutant form has dominant negative effects on Hedgehog signaling. These data suggest that the importance of the N-terminal cysteine of mature Hedgehog in patterning appendages differs between species.  相似文献   

2.
Abe Y  Kita Y  Niikura T 《The FEBS journal》2008,275(2):318-331
Mammalian glycerol uptake/transporter 1 (Gup1), a homolog of Saccharomyces cerevisiae Gup1, is predicted to be a member of the membrane-bound O-acyltransferase family and is highly homologous to mammalian hedgehog acyltransferase, known as Skn, the homolog of the Drosophila skinny hedgehog gene product. Although mammalian Gup1 has a sequence conserved among the membrane-bound O-acyltransferase family, the histidine residue in the motif that is indispensable to the acyltransferase activity of the family has been replaced with leucine. In this study, we cloned Gup1 cDNA from adult mouse lung and examined whether Gup1 is involved in the regulation of N-terminal palmitoylation of Sonic hedgehog (Shh). Subcellular localization of mouse Gup1 was indistinguishable from that of mouse Skn detected using the fluorescence of enhanced green fluorescent protein that was fused to each C terminus of these proteins. Gup1 and Skn were co-localized with an endoplasmic reticulum marker, 78 kDa glucose-regulated protein, suggesting that these two molecules interact with overlapped targets, including Shh. In fact, full-length Shh coprecipitated with FLAG-tagged Gup1 by immunoprecipitation using anti-FLAG IgG. Ectopic expression of Gup1 with full-length Shh in cells lacking endogenous Skn showed no hedgehog acyltransferase activity as determined using the monoclonal antibody 5E1, which was found to recognize the palmitoylated N-terminal signaling domain of Shh under denaturing conditions. On the other hand, Gup1 interfered with the palmitoylation of Shh catalyzed by endogenous Skn in COS7 and NSC34. These results suggest that Gup1 is a negative regulator of N-terminal palmitoylation of Shh and may contribute to the variety of biological actions of Shh.  相似文献   

3.
4.
All Hedgehog (Hh) proteins are released from producing cells despite being synthesized as N- and C-terminally lipidated, membrane-tethered molecules. Thus, a cellular mechanism is needed for Hh solubilization. We previously suggested that a disintegrin and metalloprotease (ADAM)-mediated shedding of Sonic hedgehog (ShhNp) from its lipidated N and C termini results in protein solubilization. This finding, however, seemed at odds with the established role of N-terminal palmitoylation for ShhNp signaling activity. We now resolve this paradox by showing that N-palmitoylation of ShhNp N-terminal peptides is required for their proteolytic removal during solubilization. These peptides otherwise block ShhNp zinc coordination sites required for ShhNp binding to its receptor Patched (Ptc), explaining the essential yet indirect role of N-palmitoylation for ShhNp function. We suggest a functional model in which membrane-tethered multimeric ShhNp is at least partially autoinhibited in trans but is processed into fully active, soluble multimers upon palmitoylation-dependent cleavage of inhibitory N-terminal peptides.  相似文献   

5.
Sonic hedgehog (Shh) signaling plays major roles in embryonic development and has also been associated with the progression of certain cancers. Here, Shh family members act directly as long range morphogens, and their ability to do so has been linked to the formation of freely diffusible multimers from the lipidated, cell-tethered monomer (ShhNp). In this work we demonstrate that the multimeric morphogen secreted from endogenous sources, such as mouse embryos and primary chick chondrocytes, consists of oligomeric substructures that are “undisruptable” by boiling, denaturants, and reducing agents. Undisruptable (UD) morphogen oligomers vary in molecular weight and possess elevated biological activity if compared with recombinant Sonic hedgehog (ShhN). However, ShhN can also undergo UD oligomerization via a heparan sulfate (HS)-dependent mechanism in vitro, and HS isolated from different sources differs in its ability to mediate UD oligomer formation. Moreover, site-directed mutagenesis of conserved ShhN glutamine residues abolishes UD oligomerization, and inhibitors directed against transglutaminase (TG) activity strongly decrease the amount of chondrocyte-secreted UD oligomers. These findings reveal an unsuspected ability of the N-terminal hedgehog (Hh) signaling domain to form biologically active, covalently cross-linked oligomers and a novel HS function in this TG-catalyzed process. We suggest that in hypertrophic chondrocytes, HS-assisted, TG-mediated Hh oligomerization modulates signaling via enhanced protein signaling activity.  相似文献   

6.
7.
Emerson RO  Thomas JH 《Journal of virology》2011,85(22):12043-12052
SCAN is a protein domain frequently found at the N termini of proteins encoded by mammalian tandem zinc finger (ZF) genes, whose structure is known to be similar to that of retroviral gag capsid domains and whose multimerization has been proposed as a model for retroviral assembly. We report that the SCAN domain is derived from the C-terminal portion of the gag capsid (CA) protein from the Gmr1-like family of Gypsy/Ty3-like retrotransposons. On the basis of sequence alignments and phylogenetic distributions, we show that the ancestral host SCAN domain (ESCAN for extended SCAN) was exapted from a full-length CA gene from a Gmr1-like retrotransposon at or near the root of the tetrapod animal branch. A truncated variant of ESCAN that corresponds to the annotated SCAN domain arose shortly thereafter and appears to be the only form extant in mammals. The Anolis lizard has a large number of tandem ZF genes with N-terminal ESCAN or SCAN domains. We predict DNA binding sites for all Anolis ESCAN-ZF and SCAN-ZF proteins and demonstrate several highly significant matches to Anolis Gmr1-like sequences, suggesting that at least some of these proteins target retroelements. SCAN is known to mediate protein dimerization, and the CA protein multimerizes to form the core retroviral and retrotransposon capsid structure. We speculate that the SCAN domain originally functioned to target host ZF proteins to retroelement capsids.  相似文献   

8.
9.
Mice deficient for the homeobox gene Six1 display defects in limb muscles consistent with the Six1 expression in myogenic cells. In addition to its myogenic expression domain, Six1 has been described as being located in digit tendons and as being associated with connective tissue patterning in mouse limbs. With the aim of determining a possible involvement of Six1 in tendon development, we have carefully characterised the non-myogenic expression domain of the Six1 gene in mouse and chick limbs. In contrast to previous reports, we found that this non-myogenic domain is distinct from tendon primordia and from tendons defined by scleraxis expression. The non-myogenic domain of Six1 expression establishes normally in the absence of muscle, in Pax3-/- mutant limbs. Moreover, the expression of scleraxis is not affected in early Six1-/- mutant limbs. We conclude that the expression of the Six1 gene is not related to tendons and that Six1, at least on its own, is not involved in limb tendon formation in vertebrates. Finally, we found that the posterior domain of Six1 in connective tissue is adjacent to that of the secreted factor Sonic hedgehog and that Sonic hedgehog is necessary and sufficient for Six1 expression in posterior limb regions.  相似文献   

10.
The oncogene mdm2 has been found to be amplified in human sarcomas, and the gene product binds to the tumor suppressor p53. In this report, we describe the dissection of the MDM2-binding domain on p53 as well as the p53-binding domain on MDM2. We also demonstrate that the oncoprotein simian virus 40 T antigen binds to the product of cellular oncogene mdm2. We have constructed several N- and C-terminal deletion mutants of p53 and MDM2, expressed them in vitro, and assayed their in vitro association capability. The N-terminal boundary of the p53-binding domain on MDM2 is between amino acids 1 and 58, while the C-terminal boundary is between amino acids 221 and 155. T antigen binds to an overlapping domain on the MDM2 protein. On the other hand, the MDM2-binding domain of p53 is defined by amino acids 1 and 159 at the N terminus. At the C terminus, binding is progressively reduced as amino acids 327 to 145 are deleted. We determined the effect of human MDM2 on the transactivation ability of wild-type human p53 in the Saos-2 osteosarcoma cell line, which does not have any endogenous p53. Human MDM2 inhibited the ability of human p53 to transactivate the promoter with p53-binding sites. Thus, human MDM2 protein, like the murine protein, can inactivate the transactivation ability of human p53. Interestingly, both the transactivation domain and the MDM2-binding domain of p53 are situated near the N terminus. We further show that deletion of the N-terminal 58 amino acids of MDM2, which eliminates p53 binding, also abolishes the capability of inactivating p53-mediated transactivation. This finding suggests a correlation of in vitro p53-MDM2 binding with MDM2's ability in vivo to interfere with p53-mediated transactivation.  相似文献   

11.
12.
The solution structure of the N-terminal domain of the actin-severing protein villin has been determined by multidimensional heteronuclear resonance spectroscopy. Villin is a member of a family of actin-severing proteins that regulate the organization of actin in the eukaryotic cytoskeleton. Members of this family are built from 3 or 6 homologous repeats of a structural domain of approximately 130 amino acids that is unrelated to any previously known structure. The N-terminal domain of villin (14T) contains a central beta-sheet with 4 antiparallel strands and a fifth parallel strand at one edge. This sheet is sandwiched between 2 helices on one side and a 2-stranded parallel beta-sheet with another helix on the other side. The strongly conserved sequence characteristic of the protein family corresponds to internal hydrophobic residues. Calcium titration experiments suggest that there are 2 binding sites for Ca2+, a stronger site near the N-terminal end of the longest helix, with a Kd of 1.8 +/- 0.4 mM, and a weaker site near the C-terminal end of the same helix, with a Kd of 11 +/- 2 mM. Mutational and biochemical studies of this domain in several members of the family suggest that the actin monomer binding site is near the parallel strand at the edge of the central beta-sheet.  相似文献   

13.
14.
Pyruvate phosphate dikinase (PPDK) is a multidomain protein that catalyzes the interconversion of ATP, pyruvate, and phosphate with AMP, phosphoenolpyruvate (PEP), and pyrophosphate using its central domain to transport phosphoryl groups between two distant active sites. In this study, the mechanism by which the central domain moves between the two catalytic sites located on the N-terminal and C-terminal domains was probed by expressing this domain as an independent protein and measuring its structure, stability, and ability to catalyze the ATP/phosphate partial reaction in conjunction with the engineered N-terminal domain protein (residues 1-340 of the native PPDK). The encoding gene was engineered to express the central domain as residues 381-512 of the native PPDK. The central domain was purified and shown to be soluble, monomeric (13,438 Da), and stable (deltaG = 4.3 kcal/mol for unfolding in buffer at pH 7.0, 25 degrees C) and to possess native structure, as determined by multidimensional heteronuclear NMR analysis. The main chain structure of the central domain in solution aligns closely with that of the X-ray structure of native PPDK (the root-mean-square deviation is 2.2 A). Single turnover reactions of [14C]ATP and phosphate, carried out in the presence of equal concentrations of central domain and the N-terminal domain protein, did not produce the expected products, in contrast to efficient product formation observed for the N-terminal central domain construct (residues 1-553 of the native PPDK). These results are interpreted as evidence that the central domain, although solvent-compatible, must be tethered by the flexible linkers to the N-terminal domain for the productive domain-domain docking required for efficient catalysis.  相似文献   

15.
We have defined regions in the Sonic hedgehog (Shh) molecule that are important for Patched (Ptc) receptor binding by targeting selected surface amino acid residues with probes of diverse sizes and shapes and assessing the effects of these modifications on function. Eleven amino acid residues that surround the surface of the protein were chosen for these studies and mutated to cysteine residues. These cysteines were then selectively modified with thiol-specific probes, and the modified proteins were tested for hedgehog receptor binding activity and their ability to induce differentiation of C3H10T1/2 cells into osteoblasts. Based on these analyses, approximately one-third of the Shh surface can be modified without effect on function regardless of the size of the attachment. These sites are located near to where the C terminus protrudes from the surface of the protein. All other sites were sensitive to modification, indicating that the interaction of Shh with its primary receptor Ptc is mediated over a large surface of the Shh protein. For sites Asn-50 and Ser-156, function was lost with the smallest of the probes tested, indicating that these residues are in close proximity to the Ptc-binding site. The epitope for the neutralizing mAb 5E1 mapped to a close but distinct region of the structure. The structure-activity data provide a unique view of the interactions between Shh and Ptc that is not readily attainable by conventional mapping strategies.  相似文献   

16.
Hedgehog signals regulate multiple aspects of gastrointestinal development   总被引:39,自引:0,他引:39  
The gastrointestinal tract develops from the embryonic gut, which is composed of an endodermally derived epithelium surrounded by cells of mesodermal origin. Cell signaling between these two tissue layers appears to play a critical role in coordinating patterning and organogenesis of the gut and its derivatives. We have assessed the function of Sonic hedgehog and Indian hedgehog genes, which encode members of the Hedgehog family of cell signals. Both are expressed in gut endoderm, whereas target genes are expressed in discrete layers in the mesenchyme. It was unclear whether functional redundancy between the two genes would preclude a genetic analysis of the roles of Hedgehog signaling in the mouse gut. We show here that the mouse gut has both common and separate requirements for Sonic hedgehog and Indian hedgehog. Both Sonic hedgehog and Indian hedgehog mutant mice show reduced smooth muscle, gut malrotation and annular pancreas. Sonic hedgehog mutants display intestinal transformation of the stomach, duodenal stenosis (obstruction), abnormal innervation of the gut and imperforate anus. Indian hedgehog mutants show reduced epithelial stem cell proliferation and differentiation, together with features typical of Hirschsprung's disease (aganglionic colon). These results show that Hedgehog signals are essential for organogenesis of the mammalian gastrointestinal tract and suggest that mutations in members of this signaling pathway may be involved in human gastrointestinal malformations.  相似文献   

17.
Requena  Natalia  Mann  Petra  Hampp  Rüdiger  Franken  Philipp 《Plant and Soil》2002,244(1-2):129-139
The life cycle of the obligate biotrophic arbuscular mycorrhizal fungi comprises several well-defined developmental stages whose genetic determinants are still unknown. With the aim of understanding the molecular processes governing the early developmental phase of the AM fungal life cycle, a subtractive cDNA library was constructed using a suppressive subtractive hybridization technique. The library contains more than 600 clones with an average size of 500 bp. The isolated cDNAs correspond to genes up-regulated during the early development of the AM fungus Glomus mosseaeversus genes expressed in extraradical hyphae. The expression of several of the isolated genes was further confirmed by RT-PCR analysis. Among the isolated clones, a novel gene named GmGIN1 only expressed during early development in G. mosseae was found. The full-length GmGIN1 cDNA codes for a protein of 429 amino acids. The most interesting feature of the deduced protein is its two-domain structure with a putative self-splicing activity. The N-terminal domain shares sequence similarity with a novel family of GTP binding proteins while the C-terminus has a striking homology to the C-terminal part of the hedgehog protein family from metazoa. The C-terminal part of hedgehog proteins is known to participate in the covalent modification of the N-terminus by cholesterol, and in the self-splicing activity which renders the active form of the protein with signalling function. We speculate that the N-terminal part of GmGIN1, activated through a similar mechanism to the hedgehog proteins, has GTP-binding activity and participates in the signalling events prior to symbiosis formation.  相似文献   

18.
During the development of the proventriculus (glandular stomach) of the chicken embryo, the endodermal epithelium invades into the surrounding mesenchyme and forms glands. The glandular epithelial cells produce pepsinogen, while the non-glandular (luminal) epithelial cells secrete mucus. Sonic hedgehog is expressed uniformly in the proventricular epithelium before gland formation, but its expression ceases in gland cells. Here we present evidence that down-regulation of Sonic hedgehog is necessary for gland formation in the epithelium using a specific inhibitor of Sonic hedgehog signaling and virus mediated overexpression of Sonic hedgehog. We also show that gland formation is not induced by down-regulation of Sonic hedgehog alone; a mesenchymal influence is also required.  相似文献   

19.
The CH2-CH3 interface of the IgG Fc domain contains the binding sites for a number of Fc receptors including Staphylococcal protein A and the neonatal Fc receptor (FcRn). It has recently been proposed that the CH2-CH3 interface also contains the principal binding site for an isoform of the low affinity IgG Fc receptor II (Fc gamma RIIb). The Fc gamma RI and Fc gamma RII binding sites have previously been mapped to the lower hinge and the adjacent surface of the CH2 domain although contributions of the CH2-CH3 interface to binding have been suggested. This study addresses the question whether the CH2-CH3 interface plays a role in the interaction of IgG with Fc gamma RI and Fc gamma RIIa. We demonstrate that recombinant soluble murine Fc gamma RI and human Fc gamma RIIa did not compete with protein A and FcRn for binding to IgG, and that the CH2-CH3 interface therefore appears not to be involved in Fc gamma RI and Fc gamma RIIa binding. The importance of the lower hinge was confirmed by introducing mutations in the proposed binding site (LL234,235AA) which abrogated binding of recombinant soluble Fc gamma RIIa to human IgG1. We conclude that the lower hinge and the adjacent region of the CH2 domain of IgG Fc is critical for the interaction between Fc gamma RIIa and human IgG, whereas contributions of the CH2-CH3 interface appear to be insignificant.  相似文献   

20.
Enhanced potency of human Sonic hedgehog by hydrophobic modification   总被引:4,自引:0,他引:4  
Post-translational modifications of the developmental signaling protein Sonic hedgehog (Shh) by a long-chain fatty acid at the N-terminus and cholesterol at the C-terminus greatly activate the protein in a cell-based signaling assay. To investigate the structural determinants of this activation phenomenon, hydrophobic and hydrophilic moieties have been introduced by chemical and mutagenic methods to the soluble N-terminal signaling domain of Shh and tested in both in vitro and in vivo assays. A wide variety of hydrophobic modifications increased the potency of Shh when added at the N-terminus of the protein, ranging from long-chain fatty acids to hydrophobic amino acids, with EC(50) values from 99 nM for the unmodified protein to 0.6 nM for the myristoylated form. The N-myristoylated Shh was as active as the natural form having both N- and C-terminal modifications. The degree of activation appears to correlate with the hydrophobicity of the modification rather than any specific chemical feature of the adduct; moreover, substitution with hydrophilic moieties decreased activity. Hydrophobic modifications at the C-terminus of Shh resulted in only a 2-3-fold increase in activity, and no activation was found with hydrophobic modification at other surface positions. The N-terminal modifications did not appear to alter the binding affinity of the Shh protein for the transfected receptor protein, Patched, and had no apparent effect on structure as measured by circular dichroism, thermal denaturation, and size determination. Activation of Desert Hh through modification of its N-terminus was also observed, suggesting that this is a common feature of Hh proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号