首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible involvement of N-methyl-D-aspartate (NMDA) receptors in the nucleus accumbens (NAc) in nicotine's effect on impairment of memory by morphine was investigated. A passive avoidance task was used for memory assessment in male Wistar rats. Subcutaneous (s.c.) administration of morphine (5 and 10 mg/kg) after training impaired memory performance in the animals when tested 24 h later. Pretest administration of the same doses of morphine reversed impairment of memory because of post-training administration of the opioid. Moreover, administration of nicotine (0.2 and 0.4 mg/kg, s.c.) before the test prevented impairment of memory by morphine (5 mg/kg) given after training. Impairment of memory performance in the animals because of post-training administration of morphine (5 mg/kg) was also prevented by pretest administration of a noncompetitive NMDA receptor antagonist, MK-801 (0.75 and 1 microg/rat). Interestingly, an ineffective dose of MK-801 (0.5 microg/rat) in combination with low doses (0.075 and 0.1 mg/kg) of nicotine, which had no effects alone, synergistically improved memory performance impaired by morphine given after training. On the other hand, pretest administration of NMDA (0.1 and 0.5 microg/rat), which had no effect alone, in combination with an effective dose (0.4 mg/kg, s.c.) of nicotine prevented the improving effect of nicotine on memory impaired by pretreatment morphine. The results suggest a possible role for NMDA receptors of the NAc in the improving effect of nicotine on the morphine-induced amnesia.  相似文献   

2.
AimsThe current study was undertaken to determine the role of dorsal hippocampal N-methyl-d-aspartate (NMDA) receptors in nicotine's effect on impairment of memory by ethanol.Main methodsAdult male mice were cannulated in the CA1 regions of dorsal hippocampi and trained on a passive avoidance learning task for memory assessment.Key findingsWe found that pre-training intraperitoneal (i.p.) administration of ethanol (0.5 and 1 g/kg) decreased memory retrieval when tested 24 h later. Pre-test administration of ethanol reversed the decrease in inhibitory avoidance response induced by pre-training ethanol. Similar to ethanol, pre-test administration of nicotine (0.125–0.75 mg/kg, s.c.) prevented impairment of memory by pre-training ethanol. In the animals that received ethanol (1 g/kg, i.p) before training and tested following intra-CA1 administration of different doses of NMDA (0.0005–0.005 µg/mouse), no significant change was observed in the retrieval latencies. Co-administration of the same doses of NMDA with an ineffective dose of nicotine (0.125 mg/kg, s.c.) significantly improved the memory retrieval and mimicked the effects of pre-test administration of a higher dose of nicotine. Pre-test intra-CA1 microinjection of MK-801 (0.25–1 µg/mouse), which had no effect alone, in combination with an effective dose of nicotine (0.75 mg/kg, s.c.) prevented the improving effect of nicotine on memory impaired by pre-training ethanol. Moreover, intra-CA1 microinjection of MK-801 reversed the NMDA-induced potentiation of the nicotine response.SignificanceThe results suggest the importance of NMDA glutamate system(s) in the CA1 regions of dorsal hippocampus for improving the effect of nicotine on the ethanol-induced amnesia.  相似文献   

3.
In the present study, the effects of bilateral injections of dopaminergic agents into the hippocampal CA1 regions (intra-CA1) on ethanol (EtOH) state-dependent memory were examined in mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention in adult male NMRI mice. Pre-training intra-peritoneal (i.p.) administration of EtOH (0.25, 0.5 and 1 g/kg) dose dependently induced impairment of memory retention. Pre-test administration of EtOH (0.5 g/kg)-induced state-dependent retrieval of the memory acquired under pre-training EtOH (0.5 g/kg) influence. Intra-CA1 administration of the dopamine D(1) receptor agonist, SKF 38393 (0.5, 1 and 2 g/mouse) or the dopamine D(2) receptor agonist, quinpirole (0.25, 0.5 and 1 microg/mouse) alone cannot affect memory retention. While, pre-test intra-CA1 injection of SKF 38393 (2 microg/mouse, intra-CA1) or quinpirole (0.25, 0.5 and 1 microg/mouse, intra-CA1) improved pre-training EtOH (0.5 g/kg)-induced retrieval impairment. Moreover, pre-test administration of SKF 38393 (0.5, 1 and 2 microg/mouse, intra-CA1) or quinpirole (0.5 and 1 microg/mouse, intra-CA1) with an ineffective dose of EtOH (0.25 g/kg) significantly restored the retrieval and induced EtOH state-dependent memory. Furthermore, pre-training injection of the dopamine D(1) receptor antagonist, SCH 23390 (4 microg/mouse), but not the dopamine D(2) receptor antagonist, sulpiride, into the CA1 regions suppressed the learning of a single-trial passive avoidance task. Pre-test intra-CA1 injection of SCH 23390 (2 and 4 microg/mouse, intra-CA1) or sulpiride (2.5 and 5 microg/mouse, intra-CA1) 5 min before the administration of EtOH (0.5 g/kg, i.p.) dose dependently inhibited EtOH state-dependent memory. These findings implicate the involvement of a dorsal hippocampal dopaminergic mechanism in EtOH state-dependent memory and also it can be concluded that there may be a cross-state dependency between EtOH and dopamine.  相似文献   

4.
Administration of morphine may impair learning and memory processes. Cholecystokinin has been reported to be involved in various types of memory, and our previous study found that Cholecystokinin octapeptide attenuates spatial memory impairment in chronic morphine-treated mice. However, the effect of CCK-8 on acute morphine-induced memory impairment is not clear. In this study, effect of acute CCK-8 and morphine on spatial reference memory was evaluated using Morris water maze in KM mice. Acetylcholine (Ach) content was measured using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS/MS). Pre-training with morphine (5, 10 mg/kg, i.p.) significantly impaired spatial reference memory acquisition without disturbing the performance in the visible platform task, while pre-test morphine has no effect on memory retrieval. Pre-training (0.01, 0.1 and 1 μg, i.c.v.) or pre-test (0.1 and 1 μg, i.c.v.) of CCK-8 facilitated spatial reference memory acquisition and retrieval, respectively. CCK-8 (0.1 and 1 μg) significantly attenuated memory loss by pre-training morphine. Furthermore, CCK-8 (1 μg, i.c.v) increased acetylcholine contents of hippocampus in saline or morphine-treated mice. Our study identifies CCK-8 reversed spatial reference memory loss induced by acute morphine, and the mnemonic effect could be related to the facilitation of CCK-8 on memory acquisition and retrieval through accelerating acetylcholine release in hippocampus.  相似文献   

5.
Enterostatin (VPDPR), an anorexigenic peptide derived from the amino terminus of procolipase, significantly inhibited analgesia induced by the mu-opioid agonist morphine (5 mg/kg, s.c.) after i.c.v. administration to mice at a dose of 100 nmol. On the other hand, VPDPR (approximately 200 nmol, i.c.v.) did not attenuate analgesia induced by the kappa-opioid agonist D-Phe-D-Phe-D-Nle-D-Arg-NH2 (100 microg/mouse, i.c.v.) or delta-opioid agonist DTLET (4 nmol/mouse, i.c.v.). VPDPR (100 nmol, i.c.v.) significantly improved amnesia induced by scopolamine (0.2 mg/kg, i.p.) in mice. However, VPDPR did not enhance memory in normal mice at the same dose.  相似文献   

6.
《Life sciences》1997,61(11):PL165-PL170
The effect of intracerebroventricular (i.c.v.) treatment with antisense oligodeoxynucleotide (A-oligo) to δ opioid receptor mRNA on the morphine-induced place preference and naloxone-precipitated jumping was examined in morphine-dependent mice. Morphine (5 mg/kg, s.c.) produced a significant place preference. I.c.v. pretreatment with A-oligo (0.01–1 μg/mouse) dose-dependently attenuated this morphine (5 mg/kg, s.c.)-induced place preference, while mismatched oligodeoxynucleotide (M-oligo; 1 μg/mouse, i.c.v.) was ineffective. Naloxone (3 mg/kg, s.c.) precipitated jumping in morphine-dependent mice. I.c.v. pretreatment with A-oligo (1 μg/mouse) attenuated this naloxone (3 mg/kg, s.c.)-precipitated jumping in morphine-dependent mice, while M-oligo (1 μg/mouse, i.c.v.) was ineffective. These data demonstrate that the selective reduction in supraspinal δ opioid receptor function caused by pretreatment with A-oligo attenuated the morphine-induced place preference and naloxone-precipitated jumping in morphine-dependent mice, suggesting that the rewarding effect of and physical dependence on morphine may be modulated by central δ opioid receptors.  相似文献   

7.
Enterostatin (VPDPR), an anorexigenic peptide derived from the amino terminus of procolipase, significantly inhibited analgesia induced by the μ-opioidagonist morphine (5 mg/kg, s.c.) after i.c.v. administration to mice at a dose of 100 nmol. On the other hand, VPDPR (~200 nmol, i.c.v.) did not attenuate analgesia induced by the κ-opioid agonist D-Phe-D-Phe-D-Nle-D-Arg-NH2 (100 μg/mouse, i.c.v.) or δ-opioid agonist DTLET (4 nmol/mouse, i.c.v.). VPDPR (100 nmol, i.c.v.) significantly improved amnesia induced by scopolamine (0.2 mg/kg, i.p.) in mice. However, VPDPR did not enhance memory in normal mice at the same dose.  相似文献   

8.
Suzuki T  Kato H  Tsuda M  Suzuki H  Misawa M 《Life sciences》1999,64(12):PL151-PL156
The effects of ifenprodil, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, on the morphine-induced place preference were examined in mice. Morphine (1-5 mg/kg, s.c.) produced a dose-related place preference in mice. In contrast, ifenprodil alone (5-20 mg/kg, i.p.) did not produce either preference or aversion for the drug-associated place. Pretreatment with ifenprodil (5-20 mg/kg, i.p.) suppressed the place preference produced by morphine in a dose-dependent manner. These results indicate that ifenprodil suppresses the rewarding effect produced by morphine.  相似文献   

9.
In mice pretreated intracerebroventricularly (i.c.v.) with pertussis or cholera toxins, effects of neuropeptide FF (NPFF), on hypothermia and morphine-induced analgesia, were assessed. NPFF and a potent NPFF agonist, 1DMe (0.005-22 nmol) injected into the lateral ventricle decreased morphine analgesia and produced naloxone (2.5 mg x kg(-1), s.c.)-resistant hypothermia after administration into the third ventricle. Cholera toxin (CTX 1 microg, i.c.v.) pretreatment (24 or 96 h before) inhibited the effect of 1DMe on body temperature, but failed to reverse its anti-opioid activity in the tail-flick test. CTX reduced hypothermia induced by a high dose of morphine (8 nmol, i.c.v.) but not the analgesic effect due to 3 nmol morphine. Pertussis toxin (PTX) pretreatment inhibited both morphine-hypothermia and -analgesia but did not modify hypothermia induced by 1DMe. The present results suggest that NPFF-induced hypothermia depends on the stimulation of Gs (but not Gi) proteins. In contrast, anti-opioid effects resulting from NPFF-receptor stimulation do not involve a cholera toxin-sensitive transducer protein.  相似文献   

10.
The effects of Nigella sativa oil on morphine-induced tolerance and dependence in mice and possible mechanism(s) of these effects were investigated, for the first time, in this study. Repeated administration of Nigella sativa oil (4 ml/kg, p.o.) along with morphine (5 mg/kg, s.c.) attenuated the development of tolerance, as measured by the hot plate test, and dependence, as assessed by naloxone (5 mg/kg, i.p.)-precipitated withdrawal manifestations. Concomitantly, nitric oxide overproduction and increase in brain malondialdehyde level induced by repeated administration of morphine to mice or by administration of naloxone to morphine-dependent mice were inhibited by co-administration of the oil. Also, the decrease in brain intracellular reduced glutathione level and glutathione peroxidase activity induced by both treatments were inhibited by co-administration of the oil. The increase in brain glutamate level induced by both treatments was not inhibited by concurrent administration of the oil. The inhibitory effect of the oil on morphine-induced tolerance and dependence and on naloxone-induced biochemical alterations in morphine-dependent mice was enhanced by concurrent i.p. administration of the NMDA receptor antagonist, dizocilpine (0.25 mg/kg). Similarly, concurrent i.p. administration of the NO synthase inhibitors; L-N (G)-nitroarginine methyl ester (10 mg/kg), aminoguanidine (20 mg/kg) and 7-nitroindazole (25 mg/kg) or the antioxidant, N-acetylcysteine (50 mg/kg) enhanced this inhibitory effect of the oil. On the other hand, this effect was antagonized by concurrent i.p. administration of the nitric oxide precursor, L-arginine (300 mg/kg). These results provide evidence that Nigella sativa oil, through inhibition of morphine-induced NO overproduction and oxidative stress, appears to have a therapeutic potential in opioid tolerance and dependence.  相似文献   

11.
The effects of ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, on morphine-induced place preference were examined in mice. Morphine (1-5 mg/kg, s.c.) produced a dose-related place preference in mice. Ketamine alone (3, 10 mg/kg, i.p.), like dizocilpine alone (0.2 mg/ kg, i.p.), also produced a preference for the drug-associated place. Pretreatment with ketamine (10 mg/ kg, i.p.) or dizocilpine (0.1 and 0.2 mg/kg, i.p) suppressed the place preference produced by morphine in a dose-dependent manner. These findings provide the first demonstration that ketamine alone produces a place preference using the conditioned place preference (CPP) paradigm, but that mice treated with ketamine combined with morphine show neither a morphine- nor a ketamine-induced place preference.  相似文献   

12.
The effects of intracerebroventricular (i.c.v.) injection of bovine beta-casomorphin-5 (beta-CM-5: Tyr-Pro-Phe-Pro-Gly), a micro-opioid agonist derived from milk beta-casein, on step-down type passive avoidance tasks were investigated in mice. Intracerebroventricular administration of a high dose (10 microg) of beta-CM-5 produced a significant decrease in step-down latency. beta-Funaltrexamine (5 microg, i.c.v.) almost completely reversed the beta-CM-5-induced shortening of step-down latency, although neither naltrindole (5 ng, i.c.v.) nor nor-binaltorphimine (5 microg, i.c.v.) had any significant influence on the effect of beta-CM-5. Meanwhile, a low dose (0.5 microg, i.c.v.) of beta-CM-5 inhibited scopolamine (1 mg/kg)-induced impairment of passive avoidance response. These results indicated that a high dose of beta-CM-5 induces amnesia, whereas a low dose ameliorates scopolamine-induced amnesia.  相似文献   

13.
Previous studies indicate that an increased release of cholecystokinin (CCK) in response to morphine administration may counteract opioid-induced analgesia at the spinal level. In the present study we used in vivo microdialysis to demonstrate that systemic administration of antinociceptive doses of morphine (1-5 mg/kg, s.c.) induces a dose-dependent and naloxone-reversible release of CCK-like immunoreactivity (CCK-LI) in the dorsal horn of the spinal cord. A similar response could also be observed following perfusion of the dialysis probe for 60 min with 100 microM but not with 1 microM morphine. The CCK-LI release induced by morphine (5 mg/kg, s.c.) was found to be calcium-dependent and tetrodotoxin-sensitive (1 microM in the perfusion medium). Topical application of either the L-type calcium channel blocker verapamil (50 microg) or the N-type calcium channel blocker omega-conotoxin GVIA (0.4 microg) onto the dorsal spinal cord completely prevented the CCK-LI release induced by morphine (5 mg/kg, s.c.). Our data indicate that activation of L- and N-type calcium channels is of importance for morphine-induced CCK release, even though the precise site of action of morphine in the dorsal horn remains unclear. The present findings also suggest a mechanism for the potentiation of opioid analgesia by L- and N-type calcium channel blocking agents.  相似文献   

14.
AimsIn the present experiments, the effects of bilateral microinjections of the GABA-A receptor agonist and/or antagonist into the central amygdala (CeA) on morphine state-dependent memory were examined.Main methodsIn order to assess memory retrieval, a step-through passive avoidance task was used in adult male Wistar rats.Key findingsSubcutaneous (s.c.) administration of morphine (5 and 7.5 mg/kg) immediately after training (post-training) decreased the memory retrieval. Pre-test administration of the opioid (7.5 mg/kg) also induced amnesia. The response induced by post-training morphine (7.5 mg/kg) was significantly reversed by pre-test administration of the drug (5 and 7.5 mg/kg), indicating morphine state-dependent memory. Pre-test intra-CeA microinjection of muscimol, a GABA-A receptor agonist (0.01, 0.02 and 0.03 µg/rat) reduced morphine state-dependent memory. However, the same doses of muscimol by itself had no effect on memory retrieval. Furthermore, pre-test intra-CeA microinjection of bicuculline, a GABA-A receptor antagonist by itself did not alter memory retrieval. The antagonist also did not change post-training morphine (7.5 mg/kg)-induced amnesia, but in combination with a lower dose of morphine (0.5 mg/kg), improved memory performance. Moreover, muscimol's ability to interfere with morphine state-dependent memory was reversed by co-injection of bicuculline.SignificanceThe results suggest that GABA-A receptor mechanism of the CeA may influence morphine state-dependent memory.  相似文献   

15.
Some in vivo agonist and antagonist properties of the putative k-compound bremazocine were characterized in rats. Bremazocine, at doses from 0.015-32 mg/kg i.p., delayed nociceptive reaction on a 55 degrees C hot-plate with a dose-response curve not readily fitting a single straight line; this effect was antagonized by high doses of naloxone. In the same rats bremazocine did not delay the intestinal transit of a charcoal meal fed 5 min earlier and prevented morphine-induced constipation. This antagonism appeared to be opioid-specific and competitive, with apparent pA2 value 8.56. Catatonia induced by etorphine (0.004 mg/kg s.c.) and constipation induced by etorphine (0.004 mg/kg s.c.) and D-Ala2-D-Leu5-enkephalin (0.1 mg/kg i.p.) were completely antagonized by bremazocine (0.03-8 mg/kg i.p.). Antinociception induced by morphine (10 mg/kg i.v.) and etorphine (0.004 mg/kg s.c.) was only partly prevented. Naloxone (1 mg/kg) and bremazocine (0.015-1 mg/kg i.p.) precipitated a withdrawal syndrome, evaluated as jumping frequency, in rats rendered dependent to morphine. These data suggest the involvement of more than one opioid receptor population in bremazocine action in vivo.  相似文献   

16.
《Phytomedicine》2014,21(5):745-752
Previous studies demonstrated that Withania somnifera Dunal (WS), a safe medicinal plant, prevents the development of tolerance to the analgesic effect of morphine.In the present study, we investigated whether WS extract (WSE) (100 mg/kg, i.p.) may also modulate the analgesic effect induced by acute morphine administration (2.5, 5, 10 mg/kg, s.c.) in the tail-flick and in the hot plate tests, and if it may prevent the development of 2.5 mg/kg morphine-induced rebound hyperalgesia in the low intensity tail-flick test. Further, to characterize the receptor(s) involved in these effects, we studied, by receptor-binding assay, the affinity of WSE for opioid (μ, δ, k), cannabinoid (CB1, CB2), glutamatergic (NMDA), GABAergic (GABAA, GABAB), serotoninergic (5HT2A) and adrenergic (α2) receptors.The results demonstrated that (i) WSE alone failed to alter basal nociceptive threshold in both tests, (ii) WSE pre-treatment significantly protracted the antinociceptive effect induced by 5 and 10 mg/kg of morphine only in tail-flick test, (iii) WSE pre-treatment prevented morphine-induced hyperalgesia in the low intensity tail-flick test, and (iv) WSE exhibited a high affinity for the GABAA and moderate affinity for GABAB, NMDA and δ opioid receptors.WSE prolongs morphine-induced analgesia and suppresses the development of morphine-induced rebound hyperalgesia probably through involvement of GABAA, GABAB, NMDA and δ opioid receptors. This study suggests the therapeutic potential of WSE as a valuable adjuvant agent in opioid-sparing therapies.  相似文献   

17.
The effects of intravenous (i.v.) and intracerebroventricular (i.c.v.) administration of morphine on jejunal and colonic motility were investigated in conscious dogs chronically prepared with strain gage transducers and compared to those of i.c.v. DAGO, a highly selective opiate mu agonist. Morphine i.v. (100 micrograms/kg) and i.c.v. (10 micrograms/kg) administered 3 hrs after a meal stimulated colonic motility for 3-5 hrs and induced a phase 3 on the jejunum, which appeared after a 15-60 min delay following i.c.v. administration. These effects were reproduced by DAGO administration at doses of 2 micrograms/kg i.v. and 0.2 micrograms/kg i.c.v. The effects of i.v., but not those of i.c.v., morphine and DAGO on jejunal and colonic motility were blocked by a previous administration of naloxone (100 micrograms/kg i.v.). The colonic stimulation but not the jejunal phase 3 induced by i.c.v. morphine and DAGO were blocked by RO 15-1788 (1 mg/kg i.v.), a selective benzodiazepine antagonist. The colonic stimulation induced by i.v. morphine or DAGO was not modify by i.v. RO 15-1788. It is concluded that i.c.v. administration of mu agonist involved benzodiazepine but not opiate receptors to stimulate colonic motility in dogs.  相似文献   

18.
Previously, we have demonstrated that intrathecally (i.t.) administered corticotropin-releasing factor (CRF) in mice produces stimulus-specific antinociception and modulation of morphine-induced antinociception by mechanisms involving spinal kappa opioid receptors. Recently, we also have found that CRF releases immunoreactive dynorphin A, a putative endogenous kappa opioid receptor agonist, from superfused mice spinal cords in vitro. Dynorphin A administered intracerebroventricularlly (i.c.v.) to mice has been shown to modulate the expression of morphine tolerance. In the present study, the possible modulatory effects of i.t. administered CRF as well as dynorphin A on morphine tolerance were studied in an acute tolerance model. Subcutaneous administration of 100 mg/kg of morphine sulfate (MS) to mice caused an acute tolerance to morphine-induced antinociception. The antinociceptive ED50 of MS was increased from 4.4 mg/kg (naive mice) to 17.9 mg/kg (4 hours after the injection of 100 mg/kg MS). To study the modulatory effects of spinally administered CRF and dynorphin A on the expression of morphine tolerance, CRF and dynorphin A were injected i.t. at 15 min and 5 min, respectively, before testing the tolerant mice by the tail-flick assay. The antinociceptive ED50 of MS in tolerant mice was decreased to 8.8 mg/kg and 7.1 mg/kg, respectively, after i.t. administration of CRF (0.1 nmol) and dynorphin A (0.2 nmol). In contrast, 0.5 nmol of alpha-helical CRF (9-41), a CRF antagonist and 0.4 nmol of norbinaltorphimine, a highly selective kappa opioid receptor antagonist, when administered i.t. at 15 min before the tail-flick test in tolerant mice, increased the antinociceptive ED50 of MS to 56.6 mg/kg and 88.8 mg/kg, respectively. These data confirmed the modulatory effect of dynorphin A on morphine tolerance and suggested that CRF, which releases dynorphin A in several central nervous system regions, also plays a modulatory role in the expression of morphine tolerance.  相似文献   

19.
The inhibitory effects of kappa-opioid receptor agonists on systemic skin scratching induced by the intravenous administration of morphine, a micro-opioid receptor agonist, were investigated in rhesus monkeys. Intravenous pretreatment with kappa-opioid receptor agonists, either TRK-820 at 0.25 and 0.5 microg/kg or U-50488H at 64 and 128 microg/kg, inhibited systemic skin scratching induced by morphine at 1 mg/kg, i.v. in a dose-dependent manner. By the intragastric route, apparent inhibitory effects on morphine-induced systemic skin scratching were evident following pretreatment with TRK-820 at 4 microg/kg but not with U-50488H from 512 to 2048 microg/kg. These results suggest that TRK-820 produces antipruritic effects on i.v. morphine-induced systemic skin scratching and is more readily absorbed intragastrically than is U-50488H, resulting in high bioavailability in the intragastric route.  相似文献   

20.
Jafari-Sabet M 《Life sciences》2011,88(25-26):1136-1141
AimsIn the present study, the effects of bilateral intra-dorsal hippocampal (intra-CA1) injections of cholinergic agents on muscimol state-dependent memory were examined in mice.Main methodsA single-trial step-down passive avoidance task was used for the assessment of memory retention in adult male NMRI mice.Key findingsPre-training intra-CA1 administration of a GABA-A receptor agonist, muscimol (0.05 and 0.1 μg/mouse) dose dependently induced impairment of memory retention. Pre-test injection of muscimol (0.05 and 0.1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under pre-training muscimol (0.1 μg/mouse, intra-CA1) influence. Pre-test intra-CA1 injection of an acetylcholinesterase inhibitor, physostigmine (0.5 and 1 μg/mouse, intra-CA1) reversed the memory impairment induced by pre-training administration of muscimol (0.1 μg/mouse, intra-CA1). Moreover, pre-test administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of muscimol (0.025 μg/mouse, intra-CA1) significantly restored the retrieval and induced muscimol state-dependent memory. Pre-test intra-CA1 administration of physostigmine (0.25, 0.5 and 1 μg/mouse) by itself cannot affect memory retention. Pre-test intra-CA1 injection of the muscarinic receptor antagonist, atropine (1 and 2 μg/mouse) 5 min before the administration of muscimol (0.1 μg/mouse, intra-CA1) dose dependently inhibited muscimol state-dependent memory. Pre-test intra-CA1 administration of atropine (0.5, 1 and 2 μg/mouse) by itself cannot affect memory retention.SignificanceThe results suggest that muscarinic cholinergic mechanism of the CA1 may influence muscimol state-dependent memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号