首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Successful Ag activation of naive T helper cells requires at least two signals consisting of TCR and CD28 on the T cell interacting with MHC II and CD80/CD86, respectively, on APCs. Recent evidence demonstrates that a third signal consisting of proinflammatory cytokines and reactive oxygen species (ROS) produced by the innate immune response is important in arming the adaptive immune response. In an effort to curtail the generation of an Ag-specific T cell response, we targeted the synthesis of innate immune response signals to generate Ag-specific hyporesponsiveness. We have reported that modulation of redox balance with a catalytic antioxidant effectively inhibited the generation of third signal components from the innate immune response (TNF-alpha, IL-1beta, ROS). In this study, we demonstrate that innate immune-derived signals are necessary for adaptive immune effector function and disruption of these signals with in vivo CA treatment conferred Ag-specific hyporesponsiveness in BALB/c, NOD, DO11.10, and BDC-2.5 mice after immunization. Modulating redox balance led to decreased Ag-specific T cell proliferation and IFN-gamma synthesis by diminishing ROS production in the APC, which affected TNF-alpha levels produced by CD4(+) T cells and impairing effector function. These results demonstrate that altering redox status can be effective in T cell-mediated diseases such as autoimmune diabetes to generate Ag-specific immunosuppression because it inhibits the third signal necessary for CD4(+) T cells to transition from expansion to effector function.  相似文献   

2.
One hallmark of acquired tolerance is bystander suppression, a process whereby Ag-specific (adaptive) T regulatory cells (TR) inhibit the T effector cell response both to specific Ag and to a colocalized third-party Ag. Using peripheral blood T cells from recipients of HLA-identical kidney transplants as responders in the trans vivo-delayed type hypersensitivity assay, we found that dendritic cells (DC), but not monocyte APCs, could mediate bystander suppression of EBV-specific recall response. When HA-1(H) peptide was added to mixtures of plasmacytoid DC (pDC) and T cells, bystander suppression of the response to a colocalized recall Ag occurred primarily via indolamine-2,3-dioxygenase (IDO) production. Similarly, addition of HA-1(H) peptide to cocultures of T cells and pDC, but not myeloid DC (mDC), induced IDO activity in vitro. When mDC presented HA-1(H) peptide to Ag-specific CD8+ TR, cytokine release (TGF-beta, IL-10, or both) was the primary mode of bystander suppression. Bystander suppression via mDC was reversed not only by Ab to TGF-beta and its receptor on T cells, but also by Ab to thrombospondin-1. EBV addition did not induce IDO or thrombospondin-1 in T-DC cocultures, suggesting that these DC products are not induced by T effector cells, but only by TR cells. These results shed light upon the mechanism of bystander suppression by donor Ag-specific TR in patients with organ transplant tolerance and underscores the distinct and critical roles of mDC and pDCs in this phenomenon.  相似文献   

3.
Microorganisms and microbial products induce the release of reactive oxygen species (ROS) from monocytes and other myeloid cells, which may trigger dysfunction and apoptosis of adjacent lymphocytes. Therefore, T cell-mediated immunity is likely to comprise mechanisms of T cell protection against ROS-inflicted toxicity. The present study aimed to clarify the dynamics of reduced sulfhydryl groups (thiols) in human T cells after presentation of viral and bacterial Ags by dendritic cells (DCs) or B cells. DCs, but not B cells, efficiently triggered intra- and extracellular thiol expression in T cells with corresponding Ag specificity. After interaction with DCs, the Ag-specific T cells acquired the capacity to neutralize exogenous oxygen radicals and resisted ROS-induced apoptosis. Our results imply that DCs provide Ag-specific T cells with antioxidative thiols during Ag presentation, which suggests a novel aspect of DC/T cell cross-talk of relevance to the maintenance of specific immunity in inflamed or infected tissue.  相似文献   

4.
Dissecting the mechanisms of T cell-mediated immunity requires the identification of functional characteristics and surface markers that distinguish between activated and memory T lymphocytes. In this study, we compared the rates of cytokine production by virus-specific primary and memory CD8+ T cells directly ex vivo. Ag-specific IFN-gamma and TNF-alpha production by both primary and long-term memory T cells was observed in 相似文献   

5.
6.
Protein antigen (Ag)-based immunotherapies have the advantage to induce T cells with a potentially broad repertoire of specificities. However, soluble protein Ag is generally poorly cross-presented in MHC class I molecules and not efficient in inducing robust cytotoxic CD8+ T cell responses. In the present study, we have applied poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) which strongly improve protein Ag presentation by dendritic cells (DC) in the absence of additional Toll-like receptor ligands or targeting devices. Protein Ag-loaded DC were used as antigen presenting cells to stimulate T cells in vitro and subsequently analyzed in vivo for their anti-tumor effect via adoptive transfer, a treatment strategy widely studied in clinical trials as a therapy against various malignancies. In a direct comparison with soluble protein Ag, we show that DC presentation of protein encapsulated in plain PLGA-NP results in efficient activation of CD4+ and CD8+ T cells as reflected by high numbers of activated CD69+ and CD25+, interferon (IFN)-γ and interleukin (IL)-2-producing T cells. Adoptive transfer of PLGA-NP-activated CD8+ T cells in tumor-bearing mice displayed good in vivo expansion capacity, potent Ag-specific cytotoxicity and IFN-γ cytokine production, resulting in curing mice with established tumors. We conclude that delivery of protein Ag through encapsulation in plain PLGA-NP is a very efficient and simple procedure to stimulate potent anti-tumor T cells.  相似文献   

7.
Dendritic cell (DC)-based immunotherapy has potential for treating infections and malignant tumors, but the functional capacity of DC must be assessed in detail, especially maturation and Ag-specific CTL priming. Recent reports suggest that DC that are provided with continuous maturation signals in vivo after transfer into patients are required to elicit the full DC functions. We demonstrate in this study that the rSendai virus vector (SeV) is a novel and ideal stimulant, providing DC with a continuous maturation signal via viral RNA synthesis in the cytosol, resulting in full maturation of monocyte-derived DC(s). Both RIG-I-dependent cytokine production and CD4 T cell responses to SeV-derived helper Ags are indispensable for overcoming regulatory T cell suppression to prime melanoma Ag recognized by T cell-1-specific CTL in the regulatory T cell abundant setting. DC stimulated via cytokine receptors, or TLRs, do not show these functional features. Therefore, SeV-infected DC have the potential for DC-directed immunotherapy.  相似文献   

8.
Dendritic cells (DC) play a key role in establishing protective adaptive immunity in intracellular bacterial infections, but the cells influencing DC function in vivo remain unclear. In this study, we investigated the role of NK cells in modulating the function of DC using a murine Chlamydia infection model. We found that the NK cell-depleted mice showed exacerbated disease after respiratory tract Chlamydia muridarum infection, which was correlated with altered T cell cytokine profile. Furthermore, DC from C. muridarum-infected NK-depleted mice (NK(-)DC) exhibited a less mature phenotype compared with that of DC from the infected mice without NK depletion (NK(+)DC). NK(-)DC produced significantly lower levels of both IL-12 and IL-10 than those of NK(+)DC. Moreover, NK(-)DC showed reduced ability to direct primary and established Ag-specific Th1 CD4(+) T cell responses in DC-T coculture systems. More importantly, adoptive transfer of NK(-)DC, in contrast to NK(+)DC, failed to induce type 1 protective immunity in recipients after challenge infection. Finally, NK cells showed strong direct enhancing effect on IL-12 production by DC in an NK-DC coculture system, which was partially reduced by blocking NKG2D receptors signaling and virtually abolished by neutralizing IFN-γ activity. The data demonstrate a critical role of NK cells in modulating DC function in an intracellular bacterial infection.  相似文献   

9.
10.
Dendritic cells (DCs) loaded in vitro with Ag are used as cellular vaccines to induce Ag-specific immunity. These cells are thought to be responsible for direct stimulation of Ag-specific T cells, which may subsequently mediate immunity. In this study, in transgenic mouse models with targeted MHC class II expression specifically on DCs, we show that the DC vaccine is responsible only for partial CD4(+) T cell activation, but to obtain optimal expansion of T cells in vivo, participation of endogenous (resident) DCs, but not endogenous B cells, is crucial. Transfer of Ag to endogenous DCs seems not to be mediated by simple peptide diffusion, but rather by DC-DC interaction in lymph nodes as demonstrated by histological analysis. In contrast, injection of apoptotic or necrotic DC vaccines does not induce T cell responses, but rather represents an immunological null event, which argues that viability of DC vaccines can be crucial for initial triggering of T cells. We propose that viable DCs from the DC vaccine must migrate to the draining lymph nodes and initiate a T cell response, which thereafter requires endogenous DCs that present transferred Ag in order induce optimal T cell expansion. These results are of specific importance with regard to the applicability of DC vaccinations in tumor patients, where the function of endogenous DCs is suppressed by either tumors or chemotherapy.  相似文献   

11.
The Ag-specific cellular recall response to herpes virus infections is characterized by a swift recruitment of virus-specific memory T cells. Rapid activation is achieved through formation of the immunological synapse and supramolecular clustering of signal molecules at the site of contact. During the formation of the immunological synapse, epitope-loaded MHC molecules are transferred via trogocytosis from APCs to T cells, enabling the latter to function as Ag-presenting T cells (T-APCs). The contribution of viral epitope expressing T-APCs in the regulation of the herpes virus-specific CD8+ T cell memory response remains unclear. Comparison of CD4+ T-APCs with professional APCs such as Ag-presenting CD40L-activated B cells (CD40B-APCs) demonstrated reduced levels of costimulatory ligands. Despite the observed differences, CD4+ T-APCs are as potent as CD40B-APCs in stimulating herpes virus-specific CD8+ T cells resulting in a greater than 35-fold expansion of CD8+ T cells specific for dominant and subdominant viral epitopes. Virus-specific CD8+ T cells generated by CD4+ T-APCs or CD40B-APCs showed both comparable effector function such as specific lysis of targets and cytokine production and also did not differ in their phenotype after expansion. These results indicate that viral epitope presentation by Ag-specific CD4+ T cells may contribute to the rapid recruitment of virus-specific memory CD8+ T cells during a viral recall response.  相似文献   

12.
CD1d-restricted invariant NKT (iNKT) cells can enhance immunity to cancer or prevent autoimmunity, depending on the cytokine profile secreted. Antitumor effects of the iNKT cell ligand alpha-galactosylceramide (alphaGC) and iNKT cell adoptive transfer have been demonstrated in various tumor models. Together with reduced numbers of iNKT cells in cancer patients, which have been linked to poor clinical outcome, these data suggest that cancer patients may benefit from therapy aiming at iNKT cell proliferation and activation. Herein we present results of investigations on the effects of human iNKT cells on Ag-specific CTL responses. iNKT cells were expanded using alphaGC-pulsed allogeneic DC derived from the acute myeloid leukemia cell line MUTZ-3, transduced with CD1d to enhance iNKT cell stimulation, and with IL-12 to stimulate type 1 cytokine production. Enhanced activation and increased IFN-gamma production was observed in iNKT cells, irrespective of CD4 expression, upon stimulation with IL-12-overexpressing dendritic cells. IL-12-stimulated iNKT cells strongly enhanced the MART-1 (melanoma Ag recognized by T cell 1)-specific CD8(+) CTL response, which was dependent on iNKT cell-derived IFN-gamma. Furthermore, autologous IL-12-overexpressing dendritic cells, loaded with Ag as well as alphaGC, was superior in stimulating both iNKT cells and Ag-specific CTL. This study shows that IL-12-overexpressing allogeneic dendritic cells expand IFN-gamma-producing iNKT cells, which may be more effective against tumors in vivo. Furthermore, the efficacy of autologous Ag-loaded DC vaccines may well be enhanced by IL-12 overexpression and loading with alphaGC.  相似文献   

13.
The unique ether glycerolipids of ARCHAEA: can be formulated into vesicles (archaeosomes) with strong adjuvant activity for MHC class II presentation. Herein, we assess the ability of archaeosomes to facilitate MHC class I presentation of entrapped protein Ag. Immunization of mice with OVA entrapped in archaeosomes resulted in a potent Ag-specific CD8(+) T cell response, as measured by IFN-gamma production and cytolytic activity toward the immunodominant CTL epitope OVA(257-264). In contrast, administration of OVA with aluminum hydroxide or entrapped in conventional ester-phospholipid liposomes failed to evoke significant CTL response. The archaeosome-mediated CD8(+) T cell response was primarily perforin dependent because CTL activity was undetectable in perforin-deficient mice. Interestingly, a long-term CTL response was generated with a low Ag dose even in CD4(+) T cell deficient mice, indicating that the archaeosomes could mediate a potent T helper cell-independent CD8(+) T cell response. Macrophages incubated in vitro with OVA archaeosomes strongly stimulated cytokine production by OVA-specific CD8(+) T cells, indicating that archaeosomes efficiently delivered entrapped protein for MHC class I presentation. This processing of Ag was Brefeldin A sensitive, suggesting that the peptides were transported through the endoplasmic reticulum and presented by the cytosolic MHC class I pathway. Finally, archaeosomes induced a potent memory CTL response to OVA even 154 days after immunization. This correlated to strong Ag-specific up-regulation of CD44 on splenic CD8(+) T cells. Thus, delivery of proteins in self-adjuvanting archaeosomes represents a novel strategy for targeting exogenous Ags to the MHC class I pathway for induction of CTL response.  相似文献   

14.
Flt3 ligand (FL) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are important growth factors for dendritic cells (DC). Substantial numbers of DC can be generated in vivo following the administration of either factor. We sought to extend our knowledge of the functional properties of these cells including their ability to prime na?ve CD8(+) T cells. In addition, we compared the nature of the DC generated in vivo with the single cytokines to those generated with the combination of FL+polyethylene glycol-modified GM-CSF (pGM-CSF). Treatment with FL+pGM-CSF yielded greater numbers of both CD11b(low) and CD11b(high) DC than with either cytokine alone, and these DC were more efficient at antigen (Ag) capture. The FL+pGM-CSF-generated CD11b(low) DC lacked expression of CD8alpha. Following treatment with LPS in vivo, all DC subsets upregulated CD40, CD80, CD86, and MHC class II expression, but surprisingly Ag capture was not downregulated and some DC subsets retained expression of intracellular MHC class II vesicles. Thus, even after activation in vivo with LPS, DC retained Ag capture properties of immature DC, and Ag presentation/costimulation properties of mature DC. Though all DC subsets stimulated CD4(+) T cell proliferation equivalently, FL-generated DC were more efficient at priming Ag-specific CD8(+) cytolytic T cells than DC generated with either pGM-CSF alone or FL+pGM-CSF, and CD11b(high) DC were more efficient at priming CD8(+) T cells than CD11b(low) DC.  相似文献   

15.
Salmonella typhimurium is an intracellular bacterium that replicates in the spleen and mesenteric lymph nodes (MLN) of orally infected mice. However, little is known about the Ag presentation and cytokine production capacity of dendritic cells (DC), particularly CD8alpha(+), CD8alpha(-)CD4(-), and CD8alpha(-)CD4(+) DC, from these organs in response to SALMONELLA: Infection of purified splenic DC with S. typhimiurium expressing green fluorescent protein (GFP) and OVA revealed that all three splenic DC subsets internalize bacteria, and splenic as well as MLN DC process Salmonella for peptide presentation. Furthermore, presentation of Salmonella Ags on MHC-I and MHC-II was evident in both CD8alpha(+) and CD8alpha(-) splenic DC subsets. Direct ex vivo analysis of splenic DC from mice infected with GFP-expressing Salmonella showed that all three subsets harbored bacteria, and splenic DC purified from mice given Salmonella-expressing OVA presented OVA-derived peptides on MHC-I and MHC-II. Cytokine production analyzed by intracellular staining of splenic DC infected with GFP-expressing Salmonella revealed that TNF-alpha was produced by a large percentage of CD8alpha(-) DC, while only a minor proportion of CD8alpha(+) DC produced this cytokine following bacterial exposure. In contrast, the greatest number of IL-12p40-producing DC were among CD8alpha(+) DC. Experiments inhibiting bacterial uptake by cytochalasin D as well as use of a Transwell system revealed that bacterial contact, but not internalization, was required for cytokine production. Thus, DC in sites of Salmonella replication and T cell activation, spleen and MLN, respond to bacterial encounter by Ag presentation and produce cytokines in a subset-specific fashion.  相似文献   

16.
The MUC1 transmembrane mucin is expressed on the surface of activated human T cells; however, the physiologic signals responsible for the regulation of MUC1 in T cells are not known. The present studies demonstrate that IL-7, but not IL-2 or IL-4, markedly induces MUC1 expression on CD3+ T cells. MUC1 was also up-regulated by IL-15, but to a lesser extent than that found with IL-7. The results show that IL-7 up-regulates MUC1 on CD4+, CD8+, CD25+, CD69+, naive CD45RA+, and memory CD45RO+ T cells. In concert with induction of MUC1 expression by IL-7, activated dendritic cells (DC) that produce IL-7 up-regulate MUC1 on allogeneic CD3+ T cells. DC also induce MUC1 expression on autologous CD3+ T cells in the presence of recall Ag. Moreover, DC-induced MUC1 expression on T cells is blocked by a neutralizing anti-IL-7 Ab. The results also demonstrate that DC induce polarization of MUC1 on T cells at sites opposing the DC-T cell synapse. These findings indicate that DC-mediated activation of Ag-specific T cells is associated with induction and polarization of MUC1 expression by an IL-7-dependent mechanism.  相似文献   

17.
Dendritic cells (DC) and other APCs rely on a number of specialized receptors to facilitate the uptake and intracellular accumulation of Ags. In this capacity, APCs use receptor-mediated endocytosis to enhance Ag presentation and the stimulation of Ag-specific T cells. Studies have demonstrated that the targeted delivery of Ags in vivo to CD91/the low-density lipoprotein receptor-related protein (CD91/LRP) induces enhanced activation of the adaptive immune system. However, the APC that mediates these augmented, Ag-specific responses remains to be characterized. In this study, we show that a subset of CD11c(+) lineage-negative (lin(-)) DC expresses the scavenger receptor CD91/LRP and that these rare APC are primarily responsible for the T cell activation that occurs following CD91/LRP-mediated Ag uptake in whole blood. The targeting of Ags to CD91/LRP results in enhanced receptor-mediated uptake within both lin(-) DCs and monocytes, and this uptake results in markedly increased T cell activation. Finally, purified cellular populations were used to demonstrate that CD11c(+) lin(-) DC, but not monocytes, are capable of stimulating T cell activation following CD91/LRP-mediated Ag uptake. Therefore, CD11c(+) lin(-) DC use CD91/LRP to facilitate the uptake and subsequent presentation of an array of Ags complexed within the CD91/LRP ligand, the activated form of alpha2-macroglobulin (alpha2M*).  相似文献   

18.
Experimental autoimmune uveitis (EAU) induced by immunization of animals with retinal Ags is a model for human uveitis. The immunosuppressive cytokine IL-10 regulates EAU susceptibility and may be a factor in genetic resistance to EAU. To further elucidate the regulatory role of endogenous IL-10 in the mouse model of EAU, we examined transgenic (Tg) mice expressing IL-10 either in activated T cells (inducible) or in macrophages (constitutive). These IL-10-Tg mice and non-Tg wild-type controls were immunized with a uveitogenic regimen of the retinal Ag interphotoreceptor retinoid-binding protein. Constitutive expression of IL-10 in macrophages abrogated disease and reduced Ag-specific immunological responses. These mice had detectable levels of IL-10 in sera and in ocular extracts. In contrast, expression of IL-10 in activated T cells only partially protected from EAU and marginally reduced Ag-specific responses. All IL-10-Tg lines showed suppression of Ag-specific effector cytokines. APC from Tg mice constitutively expressing IL-10 in macrophages exhibited decreased ability to prime naive T cells, however, Ag presentation to already primed T cells was not compromised. Importantly, IL-10-Tg mice that received interphotoreceptor retinoid-binding protein-specific uveitogenic T cells from wild-type donors were protected from EAU. We suggest that constitutively produced endogenous IL-10 ameliorates the development of EAU by suppressing de novo priming of Ag-specific T cells and inhibiting the recruitment and/or function of inflammatory leukocytes, rather than by inhibiting local Ag presentation within the eye.  相似文献   

19.
Concomitant administration of cyclosporin A (CsA) with Ag has been shown to augment the production of Ag-specific IgE in vivo. We demonstrate that addition of CsA also markedly potentiated Ag-specific IgE in vitro. Low doses of CsA (3 and 10 ng/ml) added at the time of culture initiation selectively enhanced Ag-specific IgE but not IgA or IgG1 production, whereas higher doses (30 ng/ml) suppressed production of all the isotypes. Augmented IgE production was found to correlate with enhanced production of IL-4 and diminished production of IFN-gamma. Delayed addition (after 2 days) of low doses of CsA to Ag-stimulated cultures did not potentiate IgE production, even though CsA differentially affected levels of IL-4 and IFN-gamma. CsA enhanced Ag-mediated cognate T/B interaction was not affected by neutralizing doses of anti-IL-4, suggesting Ag-mediated lymphocytic "synapses" may be inaccessible to anti-IL-4. The effect of CsA on Ag presentation was determined by pulsing peritoneal exudate cells, spleen cells, or primed B cells with Ag and low doses of CsA before incubation with primed splenocytes. Enhanced Ag-specific IgE responses were detected with no effect on IL-4 or IFN-gamma levels. Thus, our study indicates that CsA potentiation of Ag-specific IgE response is due to cumulative action of CsA on two independent pathways: first, CsA differentially modulates IL-4 and IFN-gamma levels during the early phase of cognate Th2/B cell interaction; and second, CsA directly affects APC and IgE isotype-specific amplifying cellular components without apparently affecting the secretory levels of IL-4 and IFN-gamma. Dual mechanisms of CsA-potentiated IgE production are consistent with the hypothesis of two-tiered T cell regulation of Ag-specific IgE responses.  相似文献   

20.
Rapamycin (RAP), tacrolimus (FK506), cyclosporin A, and glucocorticoids represent modern and classic immunosuppressive agents being used clinically. Although these agents have distinct molecular mechanisms of action and exhibit different immunoregulatory profiles, their direct influences on Ag presentation processes remain relatively unknown. Here we report quantitative and qualitative differences among the above four immunosuppressants in their impact on Ag-specific, bidirectional interaction between dendritic cells (DC) and CD4(+) T cells. In the presence of relevant Ag, bone marrow-derived DC delivered activation signals to CD4(+) T cells isolated from the DO11.10 TCR transgenic mice, leading to clonal expansion; secretion of IFN-gamma, IL-2, and IL-4; and surface expression of CD69. Conversely, DO11.10 T cells delivered maturation signals to DC, leading to IL-6 and IL-12 production and CD40 up-regulation. FK506 (10(-10)-10(-8) M) and cyclosporin A (10(-9)-10(-7) M) each blocked efficiently and uniformly all the changes resulting from intercellular signaling in both DC-->T cell and T cell-->DC directions. Dexamethasone (10(-9)-10(-6) M) suppressed all changes, except for CD69 up-regulation, rather incompletely. Remarkably, RAP (10(-10)-10(-8) M) efficiently inhibited DC-induced T cell proliferation and T cell-mediated CD40 up-regulation by DC without abrogating other changes. Interestingly, T cell-independent DC maturation triggered by LPS stimulation was inhibited by dexamethasone, but not by other agents. Our results demonstrate contrasting pharmacological effects of RAP vs calcineurin inhibitors on Ag presentation, thus forming a conceptual framework for rationale-based selection (and combination) of immunosuppressive agents for clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号