首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cx45 channel sensitivity to CO2, transjunctional voltage (Vj) and inhibition of calmodulin (CaM) expression was tested in oocytes by dual voltage-clamp. Cx45 channels are very sensitive to Vjand close preferentially by the slow gate, likely the same as the chemical gate. With CO2-induced drop in junctional conductance (Gj), the speed of Vj-dependent inactivation of junctional current (Ij) and Vjsensitivity increased. With 40 mV Vj, the τ of single exponential Ijdecay reversibly decreased by ~40% with CO2, and Gj steady state/Gj peakdecreased multiphasically, indicating that kinetics and Vjsensitivity of chemical/slow-Vjgating are altered by changes in [H+]iand/or [Ca2+]i. With 15 min exposure to CO2, Gjdropped to 0% in controls and by ~17% following CaM expression inhibition; similarly, Vjsensitivity decreased significantly. This indicates that the speed and sensitivity of Vj-dependent inactivation of Cx45 channels are increased by CO2, and that CaM plays a role in gating. Cx32 channels behaved similarly, but the drop in both Gj steady state/Gj peakand τ with CO2matched more closely that of Gj peak. In contrast, sensitivity and speed of Vjgating of Cx40 and Cx26 channels decreased, rather than increased, with CO2application.  相似文献   

2.
Cx45 channel sensitivity to CO2, transjunctional voltage (Vj) and inhibition of calmodulin (CaM) expression was tested in oocytes by dual voltage-clamp. Cx45 channels are very sensitive to Vj and close preferentially by the slow gate, likely the same as the chemical gate. With CO2-induced drop in junctional conductance (Gj), the speed of Vj-dependent inactivation of junctional current (Ij) and Vj sensitivity increased. With 40 mV Vj, the τ of single exponential Ij decay reversibly decreased by ∼40% with CO2, and Gj steady state/Gj peak decreased multiphasically, indicating that kinetics and Vj sensitivity of chemical/slow-Vj gating are altered by changes in [H+]i and/or [Ca2+]i. With 15 min exposure to CO2, Gj dropped to 0% in controls and by ∼17% following CaM expression inhibition; similarly, Vj sensitivity decreased significantly. This indicates that the speed and sensitivity of Vj-dependent inactivation of Cx45 channels are increased by CO2, and that CaM plays a role in gating. Cx32 channels behaved similarly, but the drop in both Gj steady state/Gj peak and τ with CO2 matched more closely that of Gj peak. In contrast, sensitivity and speed of Vj gating of Cx40 and Cx26 channels decreased, rather than increased, with CO2 application.  相似文献   

3.
The cystic fibrosis transmembrane regulator (CFTR) is a Cl(-) channel known to influence other channels, including connexin (Cx) channels. To study the functional interaction between CFTR and gap junction channels, we coexpressed in Xenopus oocytes CFTR and either Cx45, Cx40, Cx32 or Cx50 and monitored junctional conductance (G (j)) and its sensitivity to transjunctional voltage (V (j)) by the dual voltage-clamp method. Application of forskolin induced a Cl(-) current; increased G (j) approximately 750%, 560%, 64% and 8% in Cx45, Cx40, Cx32 and Cx50, respectively; and decreased sensitivity to V (j ) gating, monitored by a change in the ratio between G (j) steady state and G (j) peak (G (j)SS/G (j)PK) at the pulse. In oocyte pairs expressing just Cx45 in one oocyte (#1) and both Cx45 and CFTR in the other (#2), with negative pulses applied to oocyte #1 forskolin application still increased G (j) and decreased the sensitivity to V (j) gating, indicating that CFTR activation is effective even when it affects only one of the two hemichannels and that the G (j) and V (j) changes are not artifacts of decreased membrane resistance in the pulsed oocyte. COOH-terminus truncation reduced the forskolin effect on Cx40 (Cx40TR) but not on Cx32 (Cx32TR) channels. The data suggest a cross-talk between CFTR and a variety of gap junction channels. Cytoskeletal scaffolding proteins and/or other intermediate cytoplasmic proteins are likely to play a role in CFTR-Cx interaction.  相似文献   

4.
The sensitivity of Cx45 channels to CO2, transjunctional voltage (V j) and inhibition of calmodulin (CaM) expression was tested in oocytes by dual voltage clamp. Cx45 channels are very sensitive to V j and close with V j preferentially by the slow gate, likely to be the same as the chemical gate. With a CO2-induced drop in junctional conductance (G j), both the speed of V j-dependent inactivation of junctional current (I j) and V j sensitivity increased. With 40-mV V j-pulses, the of single exponential I j decay reversibly decreased by 40% during CO2 application, and Gj steady state/Gj peak decreased multiphasically, indicating that both kinetics and V j sensitivity of chemical/slow V j gating are altered by changes in [H+]i and/or [Ca2+]i. CaM expression was inhibited with oligonucleotides antisense to CaM mRNA. With 15 min CO2, relative junctional conductance (G jt/G jt0) dropped to 0% in controls, but only by 17% in CaM-antisense oocytes. Similarly, V j sensitivity was significantly lessened in CaM-antisense oocytes. The data indicate that both the speed and sensitivity of V j-dependent inactivation of the junctional current of Cx45 channels are affected by CO2 application, and that CaM plays a key role in channel gating.  相似文献   

5.
We used cell lines expressing wild-type connexin43 (Cx43) and Cx43 fused with enhanced green fluorescent protein (Cx43-EGFP) to examine mechanisms of gap junction channel gating. Previously it was suggested that each hemichannel in a cell-cell channel possesses two gates, a fast gate that closes channels to a nonzero conductance or residual state via fast (< approximately 2 ms) transitions and a slow gate that fully closes channels via slow transitions (> approximately 10 ms). Here we demonstrate that transjunctional voltage (V(j)) regulates both gates and that they are operating in series and in a contingent manner in which the state of one gate affects gating of the other. Cx43-EGFP channels lack fast V(j) gating to a residual state but show slow V(j) gating. Both Cx43 and Cx43-EGFP channels exhibit slow gating by chemical uncouplers such as CO(2) and alkanols. Chemical uncouplers do not induce obvious changes in Cx43-EGFP junctional plaques, indicating that uncoupling is not caused by dispersion or internalization of junctional plaques. Similarity of gating transitions during chemical gating and slow V(j) gating suggests that both gating mechanisms share common structural elements. Cx43/Cx43-EGFP heterotypic channels showed asymmetrical V(j) gating with fast transitions between open and residual states only when the Cx43 side was relatively negative. This result indicates that the fast V(j) gate of Cx43 hemichannels closes for relative negativity at its cytoplasmic end.  相似文献   

6.
Connexins (Cxs) 40, 43, and 45 are expressed in many different tissues, but most abundantly in the heart, blood vessels, and the nervous system. We examined formation and gating properties of heterotypic gap junction (GJ) channels assembled between cells expressing wild-type Cx40, Cx43, or Cx45 and their fusion forms tagged with color variants of green fluorescent protein. We show that these Cxs, with exception of Cxs 40 and 43, are compatible to form functional heterotypic GJ channels. Cx40 and Cx43 hemichannels are unable or effectively impaired in their ability to dock and/or assemble into junctional plaques. When cells expressing Cx45 contacted those expressing Cx40 or Cx43 they readily formed junctional plaques with cell-cell coupling characterized by asymmetric junctional conductance dependence on transjunctional voltage, V(j). Cx40/Cx45 heterotypic GJ channels preferentially exhibit V(j)-dependent gating transitions between open and residual states with a conductance of approximately 42 pS; transitions between fully open and closed states with conductance of approximately 52 pS in magnitude occur at substantially lower ( approximately 10-fold) frequency. Cx40/Cx45 junctions demonstrate electrical signal transfer asymmetry that can be modulated between unidirectional and bidirectional by small changes in the difference between holding potentials of the coupled cells. Furthermore, both fast and slow gating mechanisms of Cx40 exhibit a negative gating polarity.  相似文献   

7.
Previous studies have suggested that the aspartic acid residue (D) at the third position is critical in determining the voltage polarity of fast V(j)-gating of Cx50 channels. To test whether another negatively charged residue (a glutamic acid residue, E) could fulfill the role of the D3 residue, we generated the mutant Cx50D3E. V(j)-dependent gating properties of this mutant channel were characterized by double-patch-clamp recordings in N2A cells. Macroscopically, the D3E substitution reduced the residual conductance (G(min)) to near zero and outwardly shifted the half-inactivation voltage (V(0)), which is a result of both a reduced aggregate gating charge (z) and a reduced free-energy difference between the open and closed states. Single Cx50D3E gap junction channels showed reduced unitary conductance (γ(j)) of the main open state, reduced open dwell time at ±40 mV, and absence of a long-lived substate. In contrast, a G8E substitution tested to compare the effects of the E residue at the third and eighth positions did not modify the V(j)-dependent gating profile or γ(j). In summary, this study is the first that we know of to suggest that the D3 residue plays an essential role, in addition to serving as a negative-charge provider, as a critical determinant of the V(j)-dependent gating sensitivity, open-closed stability, and unitary conductance of Cx50 gap junction channels.  相似文献   

8.
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance (g(j,ss)) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells (V(j)) compared with homotypic gap junctions and/or an asymmetrical V(j) dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.  相似文献   

9.
Chemical gating of gap junction channels; roles of calcium, pH and calmodulin   总被引:11,自引:0,他引:11  
Both Ca(2+) and H(+) play a role in chemical gating of gap junction channels, but, with the possible exception of Cx46 hemichannels, neither of them is likely to induce gating by a direct interaction with connexins. Some evidence suggests that low pH(i) affects gating via an increase in [Ca(2+)](i); in turn, Ca(2+) is likely to induce gating by activation of CaM, which may act directly as a gating particle. The effective concentrations of both Ca(2+) and H(+) vary depending on cell type, type of connexin expressed and procedure employed to increase their cytosolic concentrations; however, pH(i) as high as 7.2 and [Ca(2+)](i) as low as 150 nM or lower have been reported to be effective in some cells. Some data suggest that Ca(2+) and H(+) affect gating by acting synergistically, but other data do not support synergism. Chemical gating follows the activation of a slow gate distinct from the fast V(j)-sensitive gate, and there is evidence that the chemical/slow gate is V(j)-sensitive. At the single channel level, the chemical/slow gate closes the channels slowly and completely, whereas the fast V(j) gate closes the channels rapidly and incompletely. At least three molecular models of channel gating have been proposed, but all of them are mostly based on circumstantial evidence.  相似文献   

10.
The ventricular action potential was applied to paired neonatal murine ventricular myocytes in the dual whole cell configuration. During peak action potential voltages >100 mV, junctional conductance (g(j)) declined by 50%. This transjunctional voltage (V(j))-dependent inactivation exhibited two time constants that became progressively faster with increasing V(j). G(j) returned to initial peak values during action potential repolarization and even exceeded peak g(j) values during the final 5% of repolarization. This facilitation of g(j) was observed <30 mV during linearly decreasing V(j) ramps. The same behavior was observed in ensemble averages of individual gap junction channels with unitary conductances of 100 pS or lower. Immunohistochemical fluorescent micrographs and immunoblots detect prominent amounts of connexin (Cx)43 and lesser amounts of Cx40 and Cx45 proteins in cultured ventricular myocytes. The time dependence of the g(j) curves and channel conductances are consistent with the properties of predominantly homomeric Cx43 gap junction channels. A mathematical model depicting two inactivation and two recovery phases accurately predicts the ventricular g(j) curves at different rates of stimulation and repolarization. Functional differences are apparent between ventricular myocytes and Cx43-transfected N2a cell gap junctions that may result from posttranslational modification. These observations suggest that gap junctions may play a role in the development of conduction block and the genesis and propagation of triggered arrhythmias under conditions of slowed conduction (<10 cm/s).  相似文献   

11.
The direct calmodulin (CaM) role in chemical gating was tested with CaM mutants, expressed in oocytes, and CaM-connexin labeling methods. CaMCC, a CaM mutant with greater Ca-sensitivity obtained by replacing the N-terminal EF hand pair with a duplication of the C-terminal pair, drastically increased the chemical gating sensitivity of Cx32 channels and decreased their Vj sensitivity. This only occurred when CaMCC was expressed before Cx32, suggesting that CaMCC, and by extension CaM, interacts with Cx32 before junction formation. Direct CaM-Cx interaction at junctional and cytoplasmic spots was demonstrated by confocal immunofluorescence microscopy in HeLa cells transfected with Cx32 and in cryosectioned mouse liver. This was confirmed in HeLa cells coexpressing Cx32-GFP (green) and CaM-RFP (red) or Cx32-CFP (cyan) and CaM-YFP (yellow) fusion proteins. Significantly, these cells did not form gap junctions. In contrast, HeLa cells expressing only one of the two fusion proteins (Cx32-GFP, Cx32-CFP, CaM-RFP or CaM-YFP) revealed both junctional and non-junctional fluorescent spots. In these cells, CaM-Cx32 colocalization was demonstrated by secondary immunofluorescent labeling of Cx32 in cells expressing CaM-YFP or CaM in cells expressing Cx32-GFP. CaM-Cx colocalization was further demonstrated at rat liver gap junctions by Freeze-fracture Replica Immunogold Labeling (FRIL).  相似文献   

12.
The effects of spermine and spermidine, endogenous polyamines that block many forms of ion channels, were investigated in homotypic connexin (Cx)-40 gap junctions expressed in N2A cells. Spermine blocked up to 95% of I(j) through homotypic Cx40 gap junctions in a concentration- and transjunctional voltage (V(j))-dependent manner. V(j) was varied from 5 to 50 mV in 5-mV steps and the dissociation constants (K(m)) were determined from spermine concentrations ranging from 10 micro M to 2 mM. The K(m) values ranged from 4.9 mM to 107 micro M for 8.6 < or = V(j) < or = 37.7 mV, within the physiological range of intracellular spermine for V(j) > or = 20 mV. The K(m) values for spermidine were > or = 5 mM. Estimates of the electrical distance (delta) for spermine (z = +4) and spermidine (z = +3) were 0.96 and 0.76 respectively. Cx40 single channel conductance was 129 pS in the presence of 2-mM spermine and channel open probability was significantly reduced in a V(j)-dependent manner. Similar concentrations of spermine did not block I(j) through homotypic Cx43 gap junctions, indicating that spermine selectively blocks Cx40 gap junctions. This is contrary to our previous findings that large tetraalkylammonium ions, also known to block several forms of ion channels, block junctional currents (I(j)) through homotypic connexin Cx40 and Cx43 gap junctions.  相似文献   

13.
The direct calmodulin (CaM) role in chemical gating was tested with CaM mutants, expressed in oocytes, and CaM-connexin labeling methods. CaMCC, a CaM mutant with greater Ca-sensitivity obtained by replacing the N-terminal EF hand pair with a duplication of the C-terminal pair, drastically increased the chemical gating sensitivity of Cx32 channels and decreased their Vj sensitivity. This only occurred when CaMCC was expressed before Cx32, suggesting that CaMCC, and by extension CaM, interacts with Cx32 before junction formation. Direct CaM-Cx interaction at junctional and cytoplasmic spots was demonstrated by confocal immunofluorescence microscopy in HeLa cells transfected with Cx32 and in cryosectioned mouse liver. This was confirmed in HeLa cells coexpressing Cx32-GFP (green) and CaM-RFP (red) or Cx32-CFP (cyan) and CaM-YFP (yellow) fusion proteins. Significantly, these cells did not form gap junctions. In contrast, HeLa cells expressing only one of the two fusion proteins (Cx32-GFP, Cx32-CFP, CaM-RFP or CaM-YFP) revealed both junctional and non-junctional fluorescent spots. In these cells, CaM-Cx32 colocalization was demonstrated by secondary immunofluorescent labeling of Cx32 in cells expressing CaM-YFP or CaM in cells expressing Cx32-GFP. CaM-Cx colocalization was further demonstrated at rat liver gap junctions by Freeze-fracture Replica Immunogold Labeling (FRIL).  相似文献   

14.
Transjunctional voltage (V(j)) gating of gap junction (GJ) channels formed of connexins has been proposed to occur by gating of the component hemichannels. We took advantage of the ability of Cx46 and Cx50 to function as unapposed hemichannels to identify gating properties intrinsic to hemichannels and how they contribute to gating of GJ channels. We show that Cx46 and Cx50 hemichannels contain two distinct gating mechanisms that generate reductions in conductance for both membrane polarities. At positive voltages, gating is similar in Cx46 and Cx50 hemichannels, primarily showing increased transitioning to long-lived substates. At negative voltages, Cx46 currents deactivate completely and the underlying single hemichannels exhibit transitions to a fully closed state. In contrast, Cx50 currents do not deactivate completely at negative voltages and the underlying single hemichannels predominantly exhibit transitions to various substates. Transitions to a fully closed state occur, but are infrequent. In the respective GJ channels, both forms of gating contribute to the reduction in conductance by V(j). However, examination of gating of mutant hemichannels and GJ channels in which the Asp at position 3 was replaced with Asn (D3N) showed that the positive hemichannel gate predominantly closes Cx50 GJs, whereas the negative hemichannel gate predominantly closes Cx46 GJs in response to V(j). We also report, for the first time, single Cx50 hemichannels in oocytes to be inwardly rectifying, high conductance channels (gamma = 470 pS). The antimalarial drug mefloquine, which selectively blocks Cx50 and not Cx46 GJs, shows the same selectivity in Cx50 and Cx46 hemichannels indicating that the actions of such uncoupling agents, like voltage gating, are intrinsic hemichannel properties.  相似文献   

15.
Gap junction channels are gated by a chemical gate and two transjunctional voltage (V j)-sensitive gates: fast and slow. Slow V j gate and chemical gate are believed to be the same. The slow gate closes at the negative side of V j and is mostly inactive without uncouplers or connexin (Cx) mutations. In contrast, our present data indicate otherwise. Oocytes expressing Cx32 were subjected to series of −100 mV V j pulses (12-s duration, 30-s intervals). Both peak (PK) and steady-state (SS) junctional conductances (G j), measured at each pulse, decreased exponentially by 50−60% (tau = ∼1.2 min). G jPK dropped more dramatically, such that G jSS/G jPK increased from 0.4 to 0.6, indicating a drop in V j sensitivity. Less striking effects were obtained with –60 mV pulses. During recovery, G j, measured by applying 20 mV pulses (2-s duration, 30-s intervals), slowly returned to initial values (tau = ∼7 min). With reversal of V j polarity, G jPK briefly increased and G jSS/G jPK decreased, suggesting that V j-dependent hemichannel reopening is faster than hemichannel closing. Similar yet more dramatic results were obtained with COOH-terminus truncated Cx32 (Cx32-D225), a mutant believed to lack fast V j gating. The data indicate that the slow gate of Cx32 is active in the absence of uncouplers or mutations and displays unusual V j behavior. Based on previous evidence for direct calmodulin (CaM) involvement in chemical/slow gating, this may also be CaM-mediated.  相似文献   

16.
The cystic fibrosis transmembrane regulator (CFTR) is a Cl channel known to influence other channels, including connexin (Cx) channels. To study the functional interaction between CFTR and gap junction channels, we coexpressed in Xenopus oocytes CFTR and either Cx45, Cx40, Cx32 or Cx50 and monitored junctional conductance (G j) and its sensitivity to transjunctional voltage (V j) by the dual voltage-clamp method. Application of forskolin induced a Cl current; increased G j approximately 750%, 560%, 64% and 8% in Cx45, Cx40, Cx32 and Cx50, respectively; and decreased sensitivity to V j gating, monitored by a change in the ratio between G j steady state and G j peak (G jSS/G jPK) at the pulse. In oocyte pairs expressing just Cx45 in one oocyte (#1) and both Cx45 and CFTR in the other (#2), with negative pulses applied to oocyte #1 forskolin application still increased G j and decreased the sensitivity to V j gating, indicating that CFTR activation is effective even when it affects only one of the two hemichannels and that the G j and V j changes are not artifacts of decreased membrane resistance in the pulsed oocyte. COOH-terminus truncation reduced the forskolin effect on Cx40 (Cx40TR) but not on Cx32 (Cx32TR) channels. The data suggest a cross-talk between CFTR and a variety of gap junction channels. Cytoskeletal scaffolding proteins and/or other intermediate cytoplasmic proteins are likely to play a role in CFTR-Cx interaction.  相似文献   

17.
Calmodulin (CaM) binding sites were recently identified on the cytoplasmic loop (CL) of at least three α-subfamily connexins (Cx43, Cx44, Cx50), while Cx40 does not have this putative CaM binding domain. The purpose of this study was to examine the functional relevance of the putative Cx43 CaM binding site on the Ca(2+)-dependent regulation of gap junction proteins formed by Cx43 and Cx40. Dual whole cell patch-clamp experiments were performed on stable murine Neuro-2a cells expressing Cx43 or Cx40. Addition of ionomycin to increase external Ca(2+) influx reduced Cx43 gap junction conductance (G(j)) by 95%, while increasing cytosolic Ca(2+) concentration threefold. By contrast, Cx40 G(j) declined by <20%. The Ca(2+)-induced decline in Cx43 G(j) was prevented by pretreatment with calmidazolium or reversed by the addition of 10 mM EGTA to Ca(2+)-free extracellular solution, if Ca(2+) chelation was commenced before complete uncoupling, after which g(j) was only 60% recoverable. The Cx43 CL(136-158) mimetic peptide, but not the scrambled control peptide, or Ca(2+)/CaM-dependent kinase II 290-309 inhibitory peptide also prevented the Ca(2+)/CaM-dependent decline of Cx43 G(j). Cx43 gap junction channel open probability decreased to zero without reductions in the current amplitudes during external Ca(2+)/ionomycin perfusion. We conclude that Cx43 gap junctions are gated closed by a Ca(2+)/CaM-dependent mechanism involving the carboxyl-terminal quarter of the connexin CL domain. This study provides the first evidence of intrinsic differences in the Ca(2+) regulatory properties of Cx43 and Cx40.  相似文献   

18.
The CO2 sensitivity of transjunctional voltage (V j) gating was studied by dual voltage clamp in oocytes expressing mouse Cx40 or its COOH terminus (CT)-truncated mutant (Cx40-TR). V j sensitivity, determined by a standard V j protocol (20 mV V j steps, 120 mV maximal), decreased significantly with exposure to 30% CO2. The Boltzmann values of control versus CO2-treated oocytes were: V 0 = 36.3 and 48.7 mV, n = 5.4 and 3.7, and G j min = 0.21 and 0.31, respectively. CO2 also affected the kinetics of V j-dependent inactivation of junctional current (I j); the time constants of two-term exponential I j decay, measured at V j = 60 mV, increased significantly with CO2 application. Similar results were obtained with Cx40-TR, suggesting that CT does not play a role in this phenomenon. The sensitivity of Cx40 channels to 100% CO2 was also unaffected by CT truncation. There is evidence that CO2 decreases the V j sensitivity of Cx26, Cx50 and Cx37 as well, whereas it increases that of Cx45 and Cx32 channels. Since Cx40, Cx26, Cx50 and Cx37 gate at the positive side of V j, whereas Cx45 and Cx32 gate at negative V j, it is likely that V j behavior with respect to CO2-induced acidification varies depending on gating polarity, possibly involving the function of the postulated V j sensor (NH2-terminus).This revised version was published online in June 2005 with a corrected cover date.  相似文献   

19.
Gap junction channels close with CO2 exposure. To determine whether the carboxy-terminus (CT) of connexin32 (Cx32) participates in gating, the CO2 sensitivity of channels made of Cx32 or Cx32 mutants was studied by double voltage clamp. In Xanopus laevis oocytes expressing Cx32, junctional conductance (Gj) dropped to 85% and 47% of controls with 3- and 15-min CO2 exposures, respectively. In response to the 15-min exposure to CO2, pHi dropped to approximately 6.4 in 5-7 min and did not decrease further, even with 30-min exposures. CT deletion by 84% did not affect CO2 sensitivity, but replacement of five arginines (R215, R219, R220, R223, and R224) with asparagines (N) or threonines at the beginning of CT (CT1) in Cx32 or Cx32 deleted beyond residue 225 greatly enhanced CO2 sensitivity (with 3-min CO2 Gj dropped to approximately 8%). Partial R/N replacement resulted in intermediate CO2 sensitivity enhancement. R215 is a stronger inhibitor than R219-220, whereas R223-224 may diminish the inhibitory efficiency of R215 and R219-220. Therefore, positive charges of CT1 reduce the CO2 sensitivity of Cx32, whereas the rest (> 80%) of CT seems to play no role in CO2-induced gating. The role of presumed electrostatic interactions among Cx32 domains in CO2-induced gating is discussed.  相似文献   

20.
We used cell lines expressing wild-type connexin43 and connexin43 fused with the enhanced green fluorescent protein (Cx43-EGFP) to examine conductance and perm-selectivity of the residual state of Cx43 homotypic and Cx43/Cx43-EGFP heterotypic gap junction channels. Each hemichannel in Cx43 cell-cell channel possesses two gates: a fast gate that closes channels to the residual state and a slow gate that fully closes channels; the transjunctional voltage (V(j)) closes the fast gate in the hemichannel that is on the relatively negative side. Here, we demonstrate macroscopically and at the single-channel level that the I-V relationship of the residual state rectifies, exhibiting higher conductance at higher V(j)s that are negative on the side of gated hemichannel. The degree of rectification increases when Cl(-) is replaced by Asp(-) and decreases when K(+) is replaced by TEA(+). These data are consistent with an increased anionic selectivity of the residual state. The V(j)-gated channel is not permeable to monovalent positively and negatively charged dyes, which are readily permeable through the fully open channel. These data indicate that a narrowing of the channel pore accompanies gating to the residual state. We suggest that the fast gate operates through a conformational change that introduces positive charge at the cytoplasmic vestibule of the gated hemichannel, thereby producing current rectification, increased anionic selectivity, and a narrowing of channel pore that is largely responsible for reducing channel conductance and restricting dye transfer. Consequently, the fast V(j)-sensitive gating mechanism can serve as a selectivity filter, which allows electrical coupling but limits metabolic communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号